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ABSTRACT 
Text input is essential in tablet computer interaction. However, 
tablet software keyboards face the problem of misrecognizing un-
intentional touch, which afects efciency and usability [29, 49]. 
In this paper, we proposed TypeBoard, a pressure-sensitive touch-
screen keyboard that prevents unintentional touches. The Type-
Board allows users to rest their fngers on the touchscreen, which 
changes the user behavior: on average, users generate 40.83 unin-
tentional touches every 100 keystrokes. The TypeBoard prevents 
unintentional touch with an accuracy of 98.88%. A typing study 
showed that the TypeBoard reduced fatigue (p < 0.005) and typing 
errors (p < 0.01), and improved the touchscreen keyboard’ typ-
ing speed by 11.78% (p < 0.005). As users could touch the screen 
without triggering responses, we added tactile landmarks on the 
TypeBoard, allowing users to locate the keys by the sense of touch. 
This feature further improves the typing speed, outperforming 
the ordinary tablet keyboard by 21.19% (p < 0.001). Results show 
that pressure-sensitive touchscreen keyboards can prevent unin-
tentional touch, improving usability from many aspects, such as 
avoiding fatigue, reducing errors, and mediating touch typing on 
tablets. 

CCS CONCEPTS 
• Human-centered computing → Text input; Keyboards; 
Touch screens. 
∗This is the corresponding author 
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1 INTRODUCTION 
Increasingly more people are using tablets for text input tasks such 
as searching the Internet, writing email messages, and ofce work 
[53]. They use software keyboards on the touchscreens of the tablets. 
However, there is a gap between touchscreen keyboards and phys-
ical keyboards in aspects of the fatigue problem [27], switching 
of visual attention [10, 36, 47], and typing speed [17, 45]. Users 
can rest their fngers on the physical keyboard but cannot rest on 
the touchscreen keyboard because touching the screen causes mis-
recognition. The fngers resting behavior plays an essential role in 
the usability of physical keyboards. First, it reduces fatigue [29]. 
Second, users touch the key to align their fngers and achieve touch 
typing [13, 19, 34, 37]. Touch typing refers to using the sense of 
touch (rather than sight) to locate the keys, improving the typing 
speed. To bridge the gap between touchscreen keyboards and phys-
ical keyboards, we propose TypeBoard, a software keyboard that 
prevents unintentional touch. As fgure 1 shows, the TypeBoard 
allows users to rest their fngers on the touchscreen. The TypeBoard 
prevents unintentional touch such as fngers resting and thenar 
eminence touch while passing users’ typing touch. Furthermore, if 
we provide tactile landmarks on the TypeBoard through deformable 
screens [2], or changeable surface texture [5, 9, 33], the user can 
perform touch typing by touching the tactile landmarks. Please 
note that preventing unintentional touch is the premise of touch 
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typing on touchscreens; otherwise, every touch for key locating 
will trigger an unwanted response. 

We are not the frst to explore the detection of unintentional 
touch on the touchscreen keyboard. In 2013, Kim et al. proposed 
TapBoard [29], a touchscreen keyboard that regards tapping actions 
as keystrokes and other touches as unintentional touches. Tapping 
actions are those touches that neither exceed a timeout threshold 
of 450 ms nor exceed a displacement threshold of 15 mm. Users 
adapted to the thresholds, which led to unnatural typing behav-
ior. TapBoard cannot determine the intention of touch until the 
touch is released. Even so, the accuracy is only 97%. We have two 
strategies to overcome TapBoard’s limitations of naturalness and 
recognition performance. First, to ensure natural interaction, we 
defned unintentional touches as those touches that do not intend 
to input words. Second, we conducted user studies to understand 
user behavior, based on which we designed the TypeBoard. 

Techniques change user behavior. For example, users will not 
rest their fngers on the touchscreen keyboard unless the touch-
screen prevents unintentional touches. Thus, to design TypeBoard, 
it is valuable to understand the users’ typing behavior on the Type-
Board itself. However, how can we observe the user behavior on 
the TypeBoard before we develop the TypeBoard? Specifcally, we 
raised three research question: RQ1): What is the user behavior on 
the TypeBoard? RQ2): How to design the TypeBoard according to 
user behavior? RQ3): What is the performance of the TypeBoard? 
We conducted three user studies to answer these questions. As RQ1 
and RQ2 are mutually interactive and restrictive, we followed an 
iterative process to answer them: 

(1) Study one: The frst iteration to answer RQ1 and RQ2. In study 
one, we collected users’ typing data on a touchpad that has no 
feedback. Participants could not input words, instead, they 
imagined inputting words and imagined that the touchpad 
prevents unintentional touch. We found eleven categories 
of unintentional touches, such as multiple fngers resting, 
hypothenar eminence touch, and repeated touchpoints. We 
developed the initial TypeBoard based on the analysis of 
user behavior. 

(2) Study two: The second iteration to answer RQ1 and RQ2. 
In study two, we collected users’ typing data on the (ini-
tial) TypeBoard. We did not found new unintentional touch 
behavior. However, the user behavior in study two was dif-
ferent from study one in details. For example, the average 
pressure of intentional touch was 33.78% lighter in study two 
because users learned that they could type without much 
efort, gradually making the touch lighter. We used the data 
in study two to develop the fnalized TypeBoard, achieving 
an accuracy of 98.88%, with a delay of 100 ms. 

(3) Study three: The evaluation of the TypeBoard, answering 
RQ3. In study three, we evaluated users’ typing performance 
on three settings, including ordinary tablet keyboard, Type-
Board, and TypeBoard plus (the TypeBoard with tactile land-
marks). The results show that the TypeBoard improves the 
efciency and usability of touchscreen typing from many 
aspects, including avoiding fatigue, relieving cognitive load, 
and reducing error rates. The TypeBoard plus further im-
proves the TypeBoard by allowing touch typing on the tablet. 

The contribution of this work is three-fold. First, we proposed 
TypeBoard, which identifes unintentional touch in text entry tasks 
with high accuracy (98.88%) and low latency (100 ms). Second, we 
explored the user behavior on the touchscreen keyboard with un-
intentional touch prevention. Third, we empirically demonstrated 
the advantages of the TypeBoard in typing speed, error rate and 
subjective user experience. 

2 RELATED WORK 

2.1 Unintentional Touch Prevention on 
Touchscreen 

Touch is the main input channel on touchscreen devices such as 
smartphones, tablets, and tabletops. Not all contacts on the touch-
screen are intended to trigger a digital response. Those touches 
that do not contribute to any interaction goal are known as un-
intentional touches [52], or namely, accidental/unwanted touches 
[35, 40]. If the unintentional touch triggers an unwanted response, 
it will afect the interaction’s efciency and naturalness [6, 52]. 
Unwanted responses disrupt the users’ workfows. Users take extra 
time to cancel the responses. As time passes, users tend to behave 
carefully and prudently on the device to avoid triggering unwanted 
touch events. For example, users of ordinary touchscreen keyboards 
hover their fngers over the screen to avoid accidental palm touches, 
which leads to the fatigue problem [49]. 

However, unintentional touch is inevitable in touchscreen inter-
actions. For example, the thenar eminence on the human hand will 
constantly contact the touchscreen during the daily use of smart-
phones [31]. Fortunately, we can flter out unintentional touches 
by software techniques. In the literature, methods of preventing 
unintentional touches have been extensively studied. We introduce 
related work through two taxonomies: (1) use scenarios and (2) 
sensors. 

2.1.1 Unintentional Touch Prevention over use scenarios. The defni-
tion of unintentional touch varies in diferent use scenarios. When 
the scenario is not limited, unintentional touches refer to those 
touches that do not contribute to any interaction goal [52]. It is 
more clear to determine the intentions of touches in specifc tasks. 
For example, unintentional touches in text entry tasks are those 
that do not intend to input words. 

A few techniques [40, 52] and a large amount of patents 
[11, 15, 26, 42, 43] identify unintentional touch in any scenario. 
Metero et al. presented guidelines to reduce the number of uninten-
tional touches on smartphones [40]. Their fltering criteria rejected 
79.6% of unintentional touches. Xu et al. identifed and fltered out 
unintentional touches on the interactive tabletop using gaze direc-
tion, head orientation, and screen contact data [52]. The accuracy 
was 91.3%. These approaches sufer from a low recognition rate. 

In the literature, more studies investigated unintentional touch 
in specifc scenarios. TapBoard and TapBoard2 discussed this issue 
under the text entry task. The TapBoard recognized tapping ac-
tions as typing behaviors, while other touches were unintentional 
touches. Tapping actions were those the duration is shorter than 
450 ms, and the movement is within 15 mm. Users needed to adapt 
to the thresholds, which was unnatural. Even so, the recognition 
rate was not high (97%). The TapBoard2 distinguished between 
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Figure 1: The TypeBoard is a software keyboard that prevents unintentional touch such as fngers resting and thenar eminence 
touches. The red points represent unintentional touches, while the green point is the intentional touch. 

typing and pointing actions with an accuracy of 95%. In pen and 
tablet interaction, unintentional touch is one of the most prominent 
features identifed as problematic by users [6]. For example, users 
have to write in an uncomfortable position to avoid palm touch. 
Several studies investigated the prevention of unintentional touch 
in pen and tablet interaction [7, 22, 44]. Schwarz et al. used spa-
tiotemporal touch features to train the classifer [44] that achieved 
the best self-reported performance, reducing accidental palm touch 
to 0.016 per pen stroke, while correctly passing 98% of stylus inputs. 
In general, methods of unintentional touch prevention perform 
better when the scenario is limited. 

2.1.2 Unintentional Touch Prevention over sensors. A mass of 
studies have been conducted to recognize unintentional input 
on touchscreen devices, including smartphones [31, 32, 35, 40], 
tablets [7, 26, 28, 29, 44] and tabletops [52]. Most techniques only 
leverage touchscreen signals, including touchpoint information 
[26, 28, 29, 40, 44] and capacitive images [7, 31]. Metero et al. used 
touchpoint patterns to identify unintentional touch on smartphones 
[40]. They proposed fltering criteria such as touch duration, po-
sition, and trajectory pattern that rejected 79.6% of unintentional 
touches while rejecting 0.8% of intentional touches. Schwarz et al. 
presented a flter that distinguishes between legitimate stylus and 
palm touches on tablet computers [44]. They extracted features 
from touchpoints and used the decision forest to train a machine 
learning model, which reduced accidental palm inputs to 0.016 per 
pen stroke, and correctly passing 97.9% of stylus inputs. PalmTouch 
[31] distinguishes between palm touch and fnger touch on smart-
phones. PalmTouch leverages the touchscreen’s capacitive image 
as input and uses Convolutional Neural Network (CNN) as the 
method, resulting in an accuracy of 99.53% in realistic scenarios. 

Other techniques enhance the sensing ability to improve the 
performance [21, 32, 35, 52]. GestureOn [35] distinguishes intended 
gesture input from unintentional touches in the standby mode of 
smartphones. The user can trigger gesture shortcuts before turning 
on the screen. GestureOn uses most smartphone sensors, including 
proximity sensors, light sensors, IR sensors, and Inertial Measure-
ment Unit (IMU). The system also leverages the pressure signal 
on the touchscreen, which is not popularized on smartphones yet. 
Based on sensor fusion, GestureOn acquires 98.2% precision and 
97.6% recall. Xu et al. leveraged gaze direction, head orientation, and 

screen contact data to identify unintentional touches on interactive 
tabletop [52]. The result showed that the patterns of gaze direction 
and head orientation improved the accuracy by 4.3%, reaching 91.3%. 
In general, sensor fusion unsurprisingly improves the recognition 
rate of unintentional touch. 

2.1.3 Summary. We suggest two viewpoints. First, in general, 
methods of preventing unintentional touch perform better when 
the use scenario is limited. In specifc scenarios, we can prevent 
unintentional touches with high accuracy so that users are willing 
to change their behavior and acquire benefts from the techniques 
[6, 28, 29]. Second, sensor fusion can usually improve the recog-
nition rate of unintentional touch. For example, several studies 
have proved that additional input channels such as pressure sig-
nals [35], gaze direction, and head orientation [52] provide help in 
recognition of unintentional touch. In this paper, we investigate 
the identifcation of unintentional touch on the pressure-sensitive 
touchscreen keyboard. We used rich sensor signals to detect unin-
tentional touches in a specifc task (text input), so we expected a 
high recognition accuracy. 

2.2 Benefts from Unintentional Touch 
Prevention 

A direct beneft from unintentional touch prevention is to reduce 
the harm caused by the misrecognition. Besides this, we summarize 
other advantages of unintentional touch prevention as follows. 

2.2.1 Bridge the Gap Between Tablet Keyboards and Physical Key-
boards. More and more people use software keyboards on the touch-
screens of the tablets [53]. However, tablet keyboards cannot com-
pare to physical keyboards in usability [10, 27, 36, 47] and efciency 
[12, 17, 45]. On physical keyboards, users can rest their fngers 
on the buttons, which is a crucial usability factor of physical key-
boards. First, it reduces fatigue [29]. Second, users can input quicker 
through touch typing, using the sense of touch (instead of sight) 
to fnd the keys [13, 19, 34, 37]. On tablet keyboards, unintentional 
touch prevention allows users to rest their fngers on the touch-
screens, which reduces typing fatigue. Furthermore, on the premise 
that the user can touch the screen without triggering response, we 
can provide tactile landmarks through deformable screens [2] or 
changeable surface texture [5, 9, 33], allowing users to perform 
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touch typing. In this way, unintentional touch prevention bridges 
the gap between tablet keyboards and physical keyboards. 

2.2.2 Leveraging Unintentional Touch as Input Channels. The goal 
of our work is to flter out unintentional touches on the touchscreen. 
However, some literature tried to use unintentional touches for 
situational awareness [55] and explicit interactions [28, 31, 41]. 
Zhang et al. leveraged unintentional touches such as the palm touch 
to augment pen and touch interactions, e.g., providing "Palm Tools" 
that teleports to a hand-centric location when the user plants their 
palm on the screen while drawing [55]. Koura et al. [30] proposed 
to use the forearm, which often creates problems such as incorrect 
recognition and occlusions, as a new input channel to manipulate 
menu. Matulic et al. enriched tabletop interaction by considering the 
whole hand as input [41]. The system detects seven diferent contact 
shapes with 91% accuracy and can be used to trigger, parameterize, 
and dynamically control menu and tool widgets. PalmTouch is an 
additional input modality that distinguishes between fnger touches 
and palm touches [31]. PalmTouch can be used as a shortcut to 
improve reachability. TapBoard2 [28] distinguishes between typing 
and pointing actions, thereby unifying the keyboard and mouse 
control spaces. It depresses the burden of frequently switching 
between devices [16]. 

3 STUDY 1: THE INITIAL TYPEBOARD 
In this study, we collected data from participants’ typing actions on 
a pressure-sensitive touchpad. The study was the frst iteration to 
investigate the users’ typing behavior on a touchscreen keyboard 
that prevents unintentional touches, based on which we designed 
the initial TypeBoard. Because (incorrect) feedback would afect 
users’ behaviors, participants typed on a touchpad without any 
feedback in this study. Participants could not input words by typ-
ing. Instead, they imagined that the desired words are inputted. 
Besides, participants needed to adapt their behaviors according to 
the imagination that the keyboard can prevent unintentional touch. 

3.1 Participants 
We recruited 16 participants from the campus (aged from 19 to 
26, M = 22.13, SD = 2.13, eight females). All the participants were 
right-handed and native Chinese speakers. They have used software 
keyboards on smartphones for not less than two years (M=7.50, SD 
= 2.25). Eight participants have ever used software keyboards on 
tablets. 

3.2 Apparatus 
Figure 2 illustrates the experimental setting. We placed a Windows 
Surface tablet computer and a Sensel Morph pressure-sensitive 
touchpad [4] together as a substitute for the pressure-sensitive 
touchscreen, which is not available in markets yet. The Sensel 
Morph contains 185 x 105 sensor elements ("sensels") at a 1.25mm 
pitch. Each contact can sense approximately 30000 levels, ranging 
from 5g to 5kg. The Sensel Morph provides capacitive images and 
touchpoint information, including position, timestamp, touch area, 
pressure, and shape. The size of the sensing area on the Sensel 
Morph was 240 mm x 138 mm. We used highlighter pens to draw a 
Qwerty layout on the touchpad. The Sensel Morph width (240mm) 
was shorter than the keyboard on a 15 inches MacBook (270mm). 

We removed some keys that are less frequently used, such as square 
brackets and the semicolon, so that the Qwerty layout could be 
placed in the Sensel Morph, while each key’s size was the same 
as Macbook (17 mm). The tablet computer was Windows Surface 
Pro6, with i7 Intel Core Processor. The program ran at 50 FPS. 

3.3 Design and Procedure 

Figure 2: The experimental setting of study one. We placed 
a tablet and a pressure-sensitive touchpad together as a sub-
stitute for the pressure-sensitive touchscreen. The keyboard 
had no feedback. The participant imagined inputting words. 

Participants flled in a Microsoft Word document to complete 
the experimental tasks. They touched on the tablet to select table 
cell and typed on the touchpad to imagine inputting words. The 
experiment included four text entry tasks: (1) flling in personal 
information, (2) short questions, (3) open-book examination, and 
(4) picture writing. The tasks were in Chinese. We counterbalanced 
the order of tasks using a balanced latin square. We did not include 
transcription as a task as other text entry studies do [38, 46, 54]. Our 
pilot study showed that users rested their fngers on the touchpad 
more frequently in our text entry tasks, which accelerated the 
process of obtaining unintentional touches. 

(1) Filling in personal information: There was a table of ten 
blanks about personal information, such as name and gender. 
Figure 3(a) shows the examples in Chinese and the transla-
tion. This assignment represented those tasks that require 
frequent switching between text input and cursor control. 
To protect privacy, participants felt free to fll in fake in-
formation. However, participants should remember what 
they intended to input, which is crucial for the subsequent 
process of labeling data. 

(2) Short questions: There was a table of ten short questions, 
such as "the favorite color" and "the best friend". Participants 
were allowed to fll in a fake answer. 

(3) Open-book examination: The exam consisted of fve hard 
questions, such as "what is the 50th element on the periodic 
table?". Participants could hardly know the answers, so they 
needed to search the Internet. This assignment represented 
the common task of browsing websites. Because the partici-
pants could not input words in the search engine, they said 
as they wrote, so the experimenter could replace them to 
input the words. 

(4) Picture writing: As fgure 3(b) shows, participants de-
scribed the picture in fve sentences. This assignment repre-
sented the tasks of writing articles. Participants said as they 
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wrote, so the experimenter could replace them to input the 
words. 

Figure 3: The illustration of experimental tasks. The left side 
shows the examples of task one (flling in personal informa-
tion) in both Chinese and translation. The right side is the 
fgure we used in task four (picture writing). 

Before the experiment, the participant had fve minutes to get 
familiar with the experiment. In the warm-up phase, participants 
typed on the touchpad freely. We reminded the participants of two 
points. First, the keyboard did not provide any feedback. Partici-
pants could not input words but imagined inputting words. Second, 
users needed to imagine that the keyboard prevents unintentional 
touches and adjust their behavior according to this assumption. 
For example, they could rest their fngers on the keyboard while 
thinking. 

Figure 4: The illustration of the label program. 

After each task, the participant labeled the data through the 
manual annotation program as fgure 4 shows. The program showed 
the touchpad capacitive images and the tablet screencast at the same 
time. There were red points on capacitive images that showed the 
touchpoints. Participants labeled the intended touches as green 
points. Participants were able to judge most touches because they 
could get contextual information from the screencast. If participants 
were not sure, they labeled the touchpoints as blue points to remove 
the data. On average, participants spent ten minutes fnishing the 
text input tasks and spent 45 minutes labeling the data. Participants 
rested for fve minutes between two tasks to avoid fatigue. The 
study lasted for 70 minutes. 

3.4 Chinese Text Entry 
As the participants were Chinese native speakers, we used Chi-
nese tasks to simulate real typing scenarios. Chinese text entry 
requires input methods. We adopted the commonly used Pinyin 
(pronunciation) method [3] in our study. The Pinyin method allows 
a user to input Chinese characters by entering the Pinyin (2 - 6 
Latin letters) and then presenting the user with a list of candidates 

with that pronunciation. Users can also type the Pinyin of a Chi-
nese word, consisting of two to four Chinese characters, and then 
select the whole word. In short, the process of inputting a Chinese 
character/word is similar to inputting an English word with word 
prediction/correction. In this study, participants assumed that the 
desired word is always the frst in the candidate list. 

3.5 Result 
The dataset contains 12659 touches, excluding the ambiguous 
touches (0.18%) in the labeling process. 67.5% of the data were 
positive samples (intentional touches), while 32.5% were negative 
samples (unintentional touches). Based on the data, we developed 
the TypeBoard algorithm (unintentional touch identifcation model) 
in three steps. Table 1 is an overview of the features we used to 
train the model and the recognition results. Each feature group 
(from "Contact area" to "Nearby touches") contributes to dealing 
with one or more intractable cases and enhances the recognition 
rate. In the remainder of this section, we introduced the model in 
detail. 

Table 1: The features we fed into the SVM model and the 
accuracy among model versions. For the features except 
"the relationship to recent/nearby touches", we extracted the 
temporal features over frames, including maximum, mini-
mum, mean, skewness, and kurtosis. 

Version 

V I 

V2 

V3 

Criterion Feature 
The information Contact area 
of current touch Ellipticity 

Introduction 
The contact area in pixels. 

The contact region is fitted as an ellipse. The 
ellipticity is the ratio of the minor axis to the major 
axis. 

Displacement The distance to the starting location. 

The proportion 

The location of 
current touch 

The relationship 
to recent/nearby 
touches 

Pressure 

Intensity 
Pressure 
proportion 

Intensity 
proportion 

Area 
proportion 

Distance to 
edges 

Distance to 

Recent 
touches 

Nearby 
touches 

The contact force in grams. 

The ratio of the pressure to the contact area. 
The ratio ofthe pressure to the total pressure of all 
touches. 

The ratio ofthe intensity to the total intensity of all 
touches. 

The ratio of the contact area to the total contact area 
of all touches. 

: The minimum distance to one of the three edges, 
!including the bottom and the two flanks. 

!The minimum distance to one of the two comers, 
!including the bottom left comer and the bottom right 

The relationships between the current touch and the 
last five touches in five seconds. The relationships 
include(!) the interval betwen their start times,(2) 
the average distance, and (3-5) the ratios in terms of 
contact area, force and intensity. If there are less than 
five touches, complete the feature vector with zeros. 

The relationships between the current touch and the 
five nearest touches within the liftcycle of the current 
touch. If there are less than five touches, complete the 
featue vector with zeros. 

Accuracy 

96.86% 
(SD=4.17%) 

98.59% 
(SD= l .46%) 

99.07% 
(SD=0.71%) 

3.5.1 Model V1: naive model for checking the manual annotation. 
There were some mislabeled data points because some participants 
misunderstood the concept of unintentional touches. In the frst 
step, we trained a naive model to identify unintentional touch, and 
used the model to double-check the manual annotation. We sampled 
the frst fve frames (100 ms) of each touch. If the touch duration is 
shorter than fve frames, we sampled the whole touch. As table 1 
(V1) shows, we extracted features from the samples as follows: for 
the contact area, ellipticity, displacement, force, and intensity over 
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frames, we calculated the temporal features, including maximum, 
minimum, mean, skewness, and kurtosis. Then, we concatenated 
these values to obtain a feature of 25 dimensions and trained an 
SVM binary classifer, namely Model V1. We balanced positive and 
negative samples in weight. 

We used the model to simulate the dataset. We found that some 
participants misunderstood the concept of unintentional touches, 
for example, regarding incorrect character inputs as unintentional 
touches. We asked the participants to relabel the suspicious data 
points through e-mail. So far, the labeled positive/negative samples 
were reliable because they were checked by both the participant and 
the researcher. After the label correction, we had 12624 data points, 
including 68.38% positive samples and 31.62% negative samples. 
Leave-one-person-out cross-validation shows that the accuracy of 
Model V1 was 96.86% (SD=4.17%). 

The labeled positive/negative samples were reliable because they 
were checked by both the participant and the researcher. The par-
ticipant could discuss with the researcher if he had any questions 
in the labeling process; if we found that a participant might mis-
understand the concept of unintentional touches, we asked him 
to check the suspicious data points. 12624 (99.54%) of which were 
labeled as positive or negative samples, while 58 touches (0.46%) 
were excluded by the participants. 

3.5.2 Model V2: filtering multiple fingers resting. Observation 
showed that most unintentional touches (72.66%) were caused by 
multiple fngers resting, where users rested no less than three fn-
gers on the screen simultaneously. As table 1 (V2) shows, we added 
criteria into the SVM model to flter out multiple fngers resting. 
The resting fngers contact the screen one after another. After the 
frst touch, the following touches come within 100 ms in most in-
stances. In 86.05% cases, the second fnger touches within 100 ms, 
while in 76.30% cases, the third fnger also touches within 100 ms. 
Because our model has a latency of 100 ms, the model has a big 
chance to realize that multiple fngers are resting. Thus, we could 
design features to flter out the unintentional touches caused by 
multiple fngers resting. We added a series of features in Model V2 
to deal with this problem. The criterion was the touch’s pressure, 
intensity, and contact area as a proportion of all touches. Table 
1 (V2) shows the details. Leave-one-person-out cross-validation 
shows that Model V2 increased the recognition accuracy to 98.59% 
(SD=1.46%). We used two metrics to measure the error rates: (1) 
False Positive Rate (FPR) - the probability of falsely recognizing an 
unintentional touch as a keystroke. (2) False Negative Rate (FNR) 
- the probability of falsely recognizing a keystroke as an uninten-
tional touch. The FRP of Model V2 was 3.16%, while the FNR was 
0.59%. 

3.5.3 Model V3: understanding the user behavior to improve the 
model. We analyzed the fail cases of Model V2 to understand those 
user behaviors that challenged the model, based on which we fur-
ther improved the SVM model. As table 2 shows, we classifed the 
fail cases into 16 categories, including ten kinds of unintentional 
touches (besides multiple fngers resting), and six kinds of indis-
cernible intentional touches. We counted each kind of fail case, 
discussed the reasons, and gave possible solutions. For the fail cases 
with a white background in the table, humans (the researchers) 

could judge their intentions without extracting contextual informa-
tion from the experiment screencast. That is, the machine should 
have correctly predicted if it is as smart as a human. For these 
cases, we proposed features to improve the model. Here are some 
examples. 

(1) EG1): Hypothenar eminence. As fgure 5(a) shows, the hy-
pothenar eminence refers to a group of muscles of the palm 
that control the motion of the little fnger, while the thenar 
eminence is the group of muscles on the palm at the base of 
the thumb. Both the two eminences may contact the touch-
screen when a user is typing. In particular, the touches caused 
by the hypothenar eminence are usually heavy and inten-
sive, which is easy to confuse with intentional touches. For-
tunately, these touches are in the bottom left and the bottom 
right corners. Thus, the distance to the closest corner could 
be a powerful feature to reject these unintentional touches. 

(2) EG2): Continuous touches. When a user continuously typed 
on the same key (e.g., the backspace), the following touches 
were lighter than the frst touch (p < 0.005). Among the 
continuous touches, the average pressure of the frst touch 
was 167.01 g (SD = 106.76), while the average pressure of 
the following touches was 150.42 g (SD = 112.70). Because 
the following touches are light, they are likely to be mis-
recognized as unintentional touches. Information of recent 
touches help to correct this fail case. 

(3) EG3): One-hand typing. As fgure 5(b) shows, sometimes 
the participant typed with one hand while resting the other 
hand on the touchscreen. In this situation, the Model V2 
mistakenly believed that all the touches were unintentional 
touches caused by the multiple fngers resting behavior. We 
added information of nearby touches to correct this fail case 
because the typing fnger is usually far away from the resting 
fngers. 

Figure 5: The examples of fail cases. The fail cases reveal 
those user behaviors that challenged the algorithm. 

However, for the fail cases with a gray background in table 2, 
humans (the researchers) could not determine their intentions with-
out watching the experiment screencast. We deemed that these fail 
cases are inevitable because the machine can not know what the 
user will input in advance. Here are some examples. First, some-
times the participant rested one fnger on the touchscreen heavily, 
indistinguishable from an intentional touch. Second, the participant 
performed a very light keystroke during inputting a word, which is 
indistinguishable from an unintentional touch. Thus, the model’s 
accuracy has a certain upper limit, roughly 99.40% in this dataset. 
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Table 2: The fail cases of Model V2. The "N" column refers to the counting of each case. 

Cases Introduction N Helpful features? 
False Positives 
Hypothenar emi-
nence (fgure 5a) 

The hypothenar eminence usually contacts the screen while typing. 23 Touchpoint location, e.g., 
nearing the corners? 

Thenar eminence 
(fgure 5a) 

The thenar eminence usually contacts the screen while typing. 2 Touchpoint location, e.g., 
nearing the bottom edge? 

Repeated reporting 
(spatial) 

A touch is misrecognized as two touches when the contact area is large. 12 Info. of nearby touchpoints. 

Repeated reporing 
(temporal) 

A touch is misrecognized as two touches if the touch is nearly released 
midway. 

3 Info. of recent touchpoints. 

Edge touch Users trigger unintentional edge touch when adjusting the placement of 
devices. 

7 Touchpoint location, e.g., 
nearing the fanks? 

Two fngers resting The user rests two fngers on the screen. 3 Info. of nearby touchpoints. 
Extra light touch When inputting, users trigger an extra touches, which is lighter than the 

recent intentional touches. 
9 Is this touch lighter than the 

recent touches? 
Slide A slide is less likely to be an intentional keystroke. 7 Touchpoint displacement. 
One fnger resting Users rest one fnger on the touchsreen, which is indistinguishable from an 

intentional touch. 
9 No solution. 

Extra heavy touch When inputting, users trigger an extra touch heavily, which seems like an 
intentional touch. 

15 No solution. 

False Negatives 
Continuous touches When a user continuously type on the same key (e.g., the delete key), the 

following touches will be lighter. 
13 Info. of recent touchpoints. 

Rollover-typing The next key is pressed before the previous is released [14]. 12 info. of recent touchpoints. 
One-hand typing The user types with one hand, while the other hand is resting on the screen. 

This case is similar to multiple fngers resting. 
6 info. of nearby touchpoints. 

Palm touch The user types with the palm resting on the screen. The palm touch is often 
detected as multiple fngers, which is similar to multiple fngers resting. 

5 info. of nearby touchpoins, 
e.g., is this touch near others? 

Light touch The very light but intended touch, which is indistinguishable from an 
unintentional touch. 

46 No solution. 

Small contact area The intended touch with a very small contact area. This seems like an 
unintentional touch. 

6 No solution. 

According to the user behaviors summarized in table 2, we added 
two criteria in the model training. The frst one is the touch location, 
including the minimum distances to the edges and the corners. We 
did not leverage the keyboard layout details (e.g., the keys’ loca-
tions) because software keyboard layouts are changeable, while 
we wanted a universal model. The second criterion is the relation-
ships between the current touch and the recent/nearby touches. 
The features in detail are in table 1 (V3). The Model V3 used all 
the features in the table. We concentrated these features to form 
a vector of 100 dimensions and trained an SVM binary classifer. 
Leave-one-person-out cross-validation showed that the accuracy 
was 99.07%. The False Positive Rate (FPR) was 1.77%, while the 
False Negative Rate (FNR) was 0.54%. So far, we have obtained a 
model with high recognition accuracy. However, as we said in the 
introduction, the data collected in study one did not represent the 
user behavior on the software keyboard that prevents unintentional 
touch, so we named Model V3 as initial TypeBoard. In study two, 
we collected the user behavior on the initial TypeBoard and then 
used the new data to improve the model. 

4 STUDY 2: THE FINALIZED TYPEBOARD 
In this study, we obtained users’ typing data on the initial Type-
Board, the touchscreen keyboard developed in study one that pre-
vents unintentional touch. The study was the second iteration to 
investigate the users’ typing behavior on the TypeBoard, based on 
which we developed the fnalized TypeBoard. 

4.1 Participants 
We recruited 16 participants from the campus (aged from 19 to 
37, M = 22.19, SD = 4.55, six females). All the participants were 
right-handed and did not take part in the frst study. They had used 
software keyboards on smartphones for not less than one year (M = 
5.88, SD = 2.36). Ten participants have ever used tablet keyboards. 

4.2 Design and Procedure 
As fgure 6 shows, the experimental devices included a Windows 
Surface tablet computer, a Sensel Morph pressure-sensitive touch-
pad, and an earphone for audio feedback. There were four text 
entry tasks, which were the same as study one, namely flling in 
personal information, short questions, open-book examination, and 
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picture writing. The changes in study two are as follows. First, 
participants could input words. Second, the keyboard prevented un-
intentional touch. Intentional touches would trigger keystrokes and 
audio feedback, while the system ignored unintentional touches. 

Figure 6: The experimental setting of study two. 

Before the experiment, participants warmed up through fve-
minute free writing. Because no participant had experience typing 
on a keyboard with unintentional touch prevention, we reminded 
the participants that they could rest their fngers on the keyboard. 
Participants could decide to rest their fngers or not according to the 
task and their preference. After fnishing each task, the participant 
labeled the data using the label program introduced in study one. 
On average, participants spent 15 minutes completing the text entry 
tasks and spent one hour labeling the data. Participants rested for 
fve minutes between two tasks to avoid fatigue. The study lasted 
for 90 minutes. The experiment took more time than study one 
because participants needed to input correct words in this study. 

4.3 Result 
The dataset contained 13789 touches, excluding the ambiguous 
touches (0.22%) in the labeling process. After the double-check of 
labels, the dataset consisted of 71.01% positive samples (intentional 
touches) and 28.99% negative samples (unintentional touches). The 
initial TypeBoard predicted the intention of touch with an accuracy 
of 98.05% (SD=1.51%) in study two. The False Positive Rate (FPR) was 
1.35% (SD=1.28%), while the False Negative Rate (FNR) was 2.20% 
(SD=1.93%). Participants encountered 0.55 false positives and 2.20 
false negatives every 100 keystrokes in study two. The recognition 
rate of the initial TypeBoard dropped from 99.07% on the study one 
dataset to 98.05% on the study two dataset, which indicated that 
the user behavior changed in study two. Because the study two 
was closer to the user’s real usage, it is valuable to investigate the 
diferences in user behaviors between the two studies. 

Compared with study one, we did not fnd new cases of un-
intentional touches in this study. However, the user behavior in 
study two was diferent from study one in detail. Table 3 shows 
the examples. First, the user’s average pressure of intentional 
touches in this study was signifcantly lighter than the last study 
(t15 = −2.78, p < .01). When typing with feedback, users found 
that they could type letters without much efort, gradually mak-
ing the touch lighter. Second, there were more continuous touches 
in this study (t15 = 3.57, p < .005), where a touch is close to the 
last touch in both time intervals (< 500 ms) and distance (< 0.5 
key widths). This is because participants need to remove incorrect 
words by continuously pressing the backspace. Third, the study 

two dataset contained fewer rollover-typing than the study one 
(t15 = −6.32, p < .001). Rollover-typing means the next key is 
pressed before the previous is released. In study two, participants’ 
typing speeds were slower, which correlated with fewer keystrokes 
typed with rollover [14]. 

As fgure 7 shows, we counted the unintentional touches caused 
by all kinds of user behavior. The number was counted in touches, 
e.g., we counted the fve fngers resting behavior fve times. The 
three most common unintentional touches were multiple fngers 
resting (82.90%), hypothenar eminence touching (7.53%), and ex-
tra light touch (3.21%). For the unintentional touches illustrated 
with translucent sub-fgures, including (h) one fnger resting and (i) 
extra heavy touch, humans could not identify their intention with-
out contextual information. The machine could hardly judge these 
cases. Fortunately, their proportion in all unintentional touches was 
only 1.52%. We retrained the model using the study two dataset. 
Leave-one-person-out cross-validation shows that the accuracy 
increased to 98.88% (SD=0.73%). The False Positive Rate (FPR) was 
2.27% (SD=2.00%), while the False Negative Rate (FNR) was 0.65% 
(SD=0.63%). On average, TypeBoard users will encounter 0.65 unrec-
ognized touchpoints and 0.93 false triggering touchpoints every 100 
keystrokes. So far, we have fnished the design of the TypeBoard. 

Figure 7: The classifcation of unintentional touches. The 
percentage in the bracket is the proportion of the corre-
sponding cases in all unintentional touches. 

4.4 Discussion 
4.4.1 Comparison to previous work. TapBoard [29] was the latest 
study that similar to our work. Please note that the TapBoard is 
diferent from our proposal TypeBoard. We both investigate unin-
tentional touch prevention on touchscreen keyboards. However, 
the TapBoard has two defects. First, the TapBoard recognizes tap-
ping actions as keystrokes and the others as unintentional touches. 
Tapping actions were those the duration is shorter than 450 ms, 
and the displacement is within 15 ms. Users adapt their behavior 
to meet the technique, which is not natural and relaxing. Second, 
the TapBoard cannot determine the intention of a touch until the 
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Table 3: The diferences of user behavior between the two studies. We use t test to evaluate the signifcance of the diference. 
If Levene’s test rejects the homoscedasticity of data, we use unequal variances t test instead. 

Touch pres-
sure 

The average touch pressure of inten-
tional touches in grams. 

188.39g 
(SD=64.72) 

124.75g 
(SD=60.71) 

Reject t15 = −2.78, 
p < .01 

Continous 
touches 

The continous touches as a percent-
age of all intentional touches. 

4.02% 
(SD=1.96%) 

11.89% 
(SD=4.41%) 

Pass t15 = 3.57, 
p < .005 

Rollover-
Typing 

The rollover-typing touches as a per-
centage of all intentional touches. 

17.60% 
(SD=9.34%) 

7.73% 
(SD=5.22%) 

Pass t15 = −6.32, 
p < .001 

Measure Introduction Study one Study two Levene’s T test 
test 

touch is released. Even so, the recognition rate is only 97%. We eval-
uated the TapBoard on our study two dataset, where participants 
performed natural typing behaviors. The recognition accuracy of 
the TapBoard was 73.83% (SD = 14.39%) on our dataset, which is 
nowhere near the performance of our proposal (98.88%, SD = 0.73%). 
The result shows that our proposal outperforms existing work. 

4.4.2 The user diferences. As fgure 8(left) shows, diferent users’ 
behaviors vary a lot. For extreme examples, P1 generated 74.40 un-
intentional touches every 100 keystrokes, while P16 only produced 
three unintentional touches during the experiment. We divided par-
ticipants into three categories. (1) P1-P10 were willing to rest their 
fngers on the touchscreen. They generated a lot of unintentional 
touches during the experiment. (2) P11-P12 believed that TypeBoard 
could prevent unintentional touches. They put their palms on the 
touchpad but seldom rested their fngers on the keyboard. P12’s 
comment was the key: "I do not rest my fngers on the touchscreen 
because I cannot press down directly in the touched state." (3) P13-P16 
hanged the wrist to input, which is similar to typing on the ordinary 
tablet keyboard. Surprisingly, they varied a lot in tablet keyboard 
expertise. P13 and P14 had only used tablet keyboards for one year, 
P15 had no experience, while P16 was an expert who performed 
touch typing on tablet keyboards. Results show that personalization 
is promising to improve the TypeBoard. 

Figure 8: The unintentional touches per 100 keystrokes over 
participants and tasks. The participants are ranked by the 
number of unintentional touches rather than the experi-
ment order. 

4.4.3 The variety of tasks. As fgure 8(right) shows, the number of 
unintentional touches varies among tasks. In the four experiment 

tasks, participants produced 46.67 (SD=48.02), 41.78 (SD=52.65), 
25.28 (SD=37.82), and 17.37 (SD=14.50) unintentional touches every 
100 keystrokes. Paired sample t-tests showed signifcant diferences 
of the numbers of multiple fngers resting touches between the 
following task pairs: 1-3 (t15 = 2.58, p < .05), 1-4 (t15 = 2.23, p < 
.05). Participants rested their fngers less frequently in task four, 
picture writing, which involved less frequent switching between 
text input and cursor control. Results show that the variety of tasks 
is essential for exploring unintentional touch but usually being 
neglected by studies [29, 44, 52]. 

4.5 Why sample fve frames in each touch? 
The more frames we sample in each touch, the more accurate the 
prediction is. However, a long sampling window means a large delay 
(20 ms per frame), which afects the user experience. There is a 
trade-of between the delay and the recognition accuracy. To strike 
a balance, we simulated our algorithm with diferent delays. Figure 
9(left) shows the results. An RM ANOVA showed that delay had a 
signifcant efect on recognition accuracy (F4,56 = 4.88,p < 0.05). 
Pair-wise comparisons showed signifcant diferences between the 
following delay pairs: 60 ms - 100 ms (p<.05), 60 ms - 120 ms (p<.05), 
60 ms - 140 ms (p<.05), 80 ms - 140 ms (p<.05). Thus, sampling 
fve frames (100 ms) was the best choice, which resulted in high 
prediction accuracy (98.88%). Meanwhile, 100 ms is the upper limit 
of user acceptable latency in the touching task [8, 24, 25]. 

Figure 9: The recognition error rates over delays and sensor 
abilities. Error bars indicate standard deviation. 

4.5.1 Can our model work with fewer sensors? The pressure signal 
on the touchscreen is helpful for unintentional touch identifcation. 
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However, most touchscreen devices have no pressure sensor yet, 
while a few devices have four pressure sensors in the corners (e.g., 
the force touch trackpad on MacBook). To explored the feasibility 
of preventing unintentional touch on existing devices, we evaluated 
the TypeBoard in three sensor settings. 

(1) Capactive touchscreen: The commonly used touchscreen 
devices have capacitive signals but not pressure signals. To 
evaluate our method on these devices, we removed all the 
features referred to pressure signals and retrained the model. 

(2) Force Touch trackpad: The MacBook’s Force Touch track-
pad has four pressure sensors in the corners. The trackpad 
provides the total pressure on the whole touchpad. We eval-
uated our model in this setting by a simulation, where we 
estimated the pressure of each touch as the product of the 
total touchscreen pressure and the touch’s contact area as a 
proportion of all touches. 

(3) Pressure-sensitive touchscreen: Future touchscreen de-
vices may provide high-resolution pressure signals, which is 
the experimental setting in our paper. 

Figure 9(right) shows our method’s performances in the three 
sensor settings. An RM ANOVA shows a signifcant efect of setting 
on the recognition accuracy (F2,28 = 10.52, p < 0.001). Bonferroni-
corrected post hoc tests showed signifcant diferences between the 
following setting pairs: 1-2 (p<.005), 1-3 (p<.005). The diference be-
tween setting two and three was a tendency (p=.062). Results show 
that the method performs the best on pressure-sensitive touch-
screens, while touchscreen devices with a total pressure signal 
strike a balance between recognition rate and hardware cost. 

5 STUDY 3: EVALUATION ON TYPEBOARD 
The motivations of study three were two-fold. First, we compared 
the performance and user experience of the TypeBoard and the 
ordinary touchscreen keyboard. Second, as we introduced in re-
lated work, tactile landmarks on keyboards improve users’ typing 
speed by enabling touch typing, so we investigated the feasibility 
of TypeBoard plus tactile landmarks in this study. In summary, we 
evaluated users’ typing performance on three settings: (1) ordinary 
software keyboard, (2) TypeBoard, and (3) TypeBoard plus, which 
was the TypeBoard plus tactile landmarks. 

5.1 Participants 
We recruited 15 participants from the campus (aged from 19 to 
26, M = 20.87, SD = 2.42, seven females). All the participants were 
right-handed and did not take part in the previous studies. They 
have used software keyboards on smartphones for not less than 
two years (M = 6.67, SD = 2.06). Eleven participants have ever used 
software keyboards on tablets. 

5.2 Design and Procedure 
The study followed a within-subject design to compare users’ typing 
speed in three keyboard confgurations. The participant sat on an 
ofce chair. He could adjust the chair to a comfortable position. 
The participant typed on the pressure-sensitive touchpad to input 
words and received visual feedback from the tablet. As fgure 10 
shows, there were three keyboard settings in the experiment as 
follows: 

(1) Confg. 1): Ordinary Keyboard. On the ordinary software 
keyboard, all contacts on the touchscreen are recognized 
as keystrokes. Users hang their wrists in the air to avoid 
unintentional touches. 

(2) Confg. 2): TypeBoard. The TypeBoard is a software key-
board with unintentional touch prevention. The system rec-
ognized intentional touches as keystrokes. Users can rest 
their hands on the keyboard. 

(3) Confg. 3): TypeBoard plus. The TypeBoard plus refers to the 
TypeBoard plus tactile landmarks. To provide tactile land-
marks on TypeBoard, we attached 0.05 mm thick stickers on 
the touchpad to simulate physical keys. There were small 
bumps on the F and J keys, which is the same as the phys-
ical keyboard. Users can align their fngers without visual 
attention. 

Figure 10: The three keyboard settings in study three. 

There were fve repeated sessions for each of the three keyboard 
confgurations. In each session, participants transcribed a Chinese 
paragraph in a Microsoft Word document. Transcription is widely 
used in text entry researches [38, 46, 54] to evaluate the ceiling 
typing speed. There were roughly 100 Chinese characters in a task 
paragraph. We randomly selected the task paragraphs in a typing 
speed measurement website [1]. Participants were asked to input 
as fast and accurately as possible. We counterbalanced the order of 
keyboard confguration using a balanced latin square. Participants 
had fve minutes to warm up before they used each keyboard. They 
transcribed a paragraph to get familiar with the keyboard. The 
task phrases in the training step would not appear in the formal 
experiment. Participants rested for two minutes between sessions to 
avoid fatigue. On average, participants spent 90 minutes completing 
the experiment. 

5.3 Reslut 
A Repeated Measures (RM) ANOVA was conducted for text entry 
speed, Uncorrected Error Rate (UER), and Corrected Error Rate 
(CER). The within factors were the keyboard and the session. As 
UER and CER violated the normalcy, we used the Aligned Rank 
Transform [51] for correction. If any independent variable had 
signifcant efects (p < 0.05), we used Bonferroni-corrected post hoc 
tests for pairwise comparisons. 

5.3.1 Speed. We measured text entry speed in Chinese characters 
per minute (CPM) with this formula: 

|S |
CPM = × 60 (1)

T 
where |S| is the length of the transcribed paragraph in charac-

ters (including punctuation), and T is the completion time, i.e., the 
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elapsed time in seconds from the frst intentional touch to the last 
one. All the time consumption, including the time of candidate 
selection, was taken into account. 

Figure 11: Text entry speed of the three keyboards over ses-
sions. Error bars indicate 95% confdence interval. 

Figure 11 shows the users’ typing speeds over sessions. There is
no signifcant efect on 2   of session  speed (F4,56 = 1.76, p = .15, ηp = 
0.11). The result indicates that the learning costs of the three key-
boards were low. Participants reached the ceiling performance after 
a fve-minute training. Keyboard has a signifcant efect on speed 
( 2 F2,28 = 26.76, p < .001, η = 0.66  p ). Pair-wise comparisons show 
signifcant diferences between all the keyboard pairs: ordinary key-
board vs. TypeBoard (p < .005), ordinary keyboard vs. TypeBoard 
plus (p < .001), and TypeBoard vs. TypeBoard plus (p < .005). The 
participants’ average typing speed on the ordinary keyboard was 
43.71 CPM (SD = 6.52). The typing speed on the TypeBoard was 
48.87 CPM (SD = 10.14), outperforming the ordinary keyboard by 
11.78%. The typing speed on the TypeBoard plus was 52.97 CPM (SD 
= 9.85), outperforming the ordinary keyboard by 21.19%. Results 
show that the TypeBoard improves the efciency of the touchscreen 
keyboard. 

To compare between the TypeBoard and physical keyboards, we 
conducted an informal experiment to evaluate participants’ typ-
ing speed on physical keyboards. They transcribed fve Chinese 
paragraphs on the typing speed measurement website [1]. Partici-
pants used their own physical keyboards to complete the task. The 
average speed was 65.01 CPM (SD=9.26). The result shows that 
there was still a gap between touchscreen keyboards and physical 
keyboards, but the TypeBoard plus narrowed this gap by 43.48%. 

5.3.2 Error rate. We used two metrics to measure text entry ac-
curacy: (1) Uncorrected Error Rate (UER) - text entry errors that 
remain in the transcribed string. UER is the number of uncorrected 
erroneous Chinese characters divided by the number of correct 
and erroneous characters. (2) Corrected Error Rate (CER) - text 
entry errors that are fxed (e.g., backspaced) during entry. CER is 
the number of corrected erroneous Chinese characters divided by 
the number of correct and erroneous characters. The corrections of 
Pinyin while inputting a word were not taken into account of CER. 
As UER and UER violated the normalcy, we used the Aligned Rank 
Transform for nonparametric factorial analysis [51]. 

Figure 12: Uncorrected error rates and Corrected error rates 
of the three keyboards over sessions. 

Figure 12 shows the CER and the UER over sessions. There is no 
signifcant efect of session on CER (F4,56 = 1.01, p = .39). Keyboard 
has a signifcant efect on CER (F2,28 = 9.49, p < .005). Pair-wise 
comparisons showed signifcant diferences between the following 
keyboard pairs: ordinary keyboard vs. TypeBoard (p < .01), and 
ordinary keyboard vs. TypeBoard plus (p < .005). The average 
CERs of the ordinary keyboard, TypeBoard, and TypeBoard plus 
were 6.66% (SD = 4.42%), 4.58% (SD = 3.58%), and 4.21% (SD = 2.58%).
There is no signifcant efect of session (F4,56 = 0.41,p = .71) or 
keyboard (F2,28 = 0.001,p = .998) on UER. The average UERs of 
the ordinary keyboard, TypeBoard, and TypeBoard plus were 1.29% 
(SD = 1.67%), 1.28% (SD = 1.38%), and 1.28% (SD = 1.16%). Results 
show that preventing unintentional touch reduces the probability 
of making typos. This is the main reason the TypeBoard improves 
the tablet keyboard’s typing speed. Compared with the TypeBoard, 
the TypeBoard plus does not reduce the error rate. There are other 
reasons for the faster typing on the TypeBoard plus. 

5.3.3 Time components. To gain deeper insight into the perfor-
mance comparison among keyboards, we broke down the text entry 
time into four components: typing time, selecting time, deleting 
time, and pause time. Typing time was the time spent on typing 
Pinyin. Selecting time was the time spent on selecting a candi-
date Chinese character/word. Deleting time was the time spent on 
deleting characters. Pause time span from inputting the last char-
acter/word to starting the next character/word. Figure 13 shows 
the typing time, selecting time, deleting time, and pausing time 
per Chinese character over the three keyboards. RM ANOVAs 
showed that keyboard has signifcant efects on selecting time 
(F2,28 = 7.85, p < .005), deleting time (F2,28 = 20.89, p < .001), 
and pause time (F2,28 = 12.76, p < .001). Pair-wise comparisons 
showed that both the TypeBoard (p<.001) and the TypeBoard plus 
(p<.001) reduce the ordinary keyboard’s deleting time. The results 
showed that unintentional touch prevention reduced typos. The 
TypeBoard plus signifcantly reduced the pause time compared to 
the ordinary keyboard (p<.001) and the TypeBoard (p<.005). The 
results indicated that participants performed touch typing more 
frequently on the TypeBoard plus, saving the time of fnding the 
next transcribing word. 

5.3.4 Touch position. Figure 14 shows the distribution of inten-
tional touches on the TypeBoard and the TypeBoard plus. For con-
venience, we assumed that the point clouds obeyed 2D Gaussian dis-
tributions. While the key width and height are 17 mm, the average 
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Figure 13: Time components. 

X/Y ofsets were -1.03/-0.29 mm on the TypeBoard and -2.02/-0.59 
mm on the TypeBoard plus. This result shows that users touch 
closes to the key center. The average X/Y standard deviations of 
the distributions were 5.66/5.07 mm and 5.01/4.53 mm on the Type-
Board and the TypeBoard plus. A paired sample t-test shows that 
keyboard has a signifcant efect on the average product of X and Y 
standard deviations (t15 = −4.65, p < .001), which indicated that 
users typed more accurately on the TypeBoard plus. Users touched 
the tactile landmarks on the TypeBoard plus to aligned their fngers, 
which improved the typing accuracy. 

Figure 14: The distributions of intentional touches on the 
TypeBoard (above) and the TypeBoard plus (below). The el-
lipses show 3 standard deviation of the distribution. The col-
ors indicate keys’ frequency. 

5.3.5 Subjective Rating and Feedback. Participants rated the subjec-
tive speed, accuracy, fatigue, and cognitive load on a 7-point Likert 
scale (1 - the worst; 7 - the best) after using each keyboard. Figure 15 
shows the results. Wilcoxon Signed-Rank tests show that the Type-
Board signifcantly improves the ordinary keyboard’s subjective 
speed (Z = −2.27,p < .05), accuracy (Z = −3.24, p < .005), fatigue 
(Z = −2.84,p < .005), and cognitive load (Z = −1.99, p < .05). The 
TypeBoard plus improves the ordinary keyboard’s subjective speed 
(Z = −3.17,p < .005), accuracy (Z = −3.52, p < .001), fatigue 
(Z = −3.34,p < .001), and cognitive load (Z = −2.28, p < .05). The 
TypeBoard plus is better than the TypeBoard on subjective speed 
(Z = −2.40, p < .05) and fatigue (Z = −2.85,p < .005). Results 

show that both the TypeBoard and the TypeBoard plus improve 
the ordinary keyboard’s user experience. 

Figure 15: Subjective ratings (higher is better). 

5.3.6 Summary. (1) Compared with the ordinary keyboard, the 
TypeBoard improves the typing speed by 11.78%. The TypeBoard 
has the advantages of avoiding fatigue, relieving cognitive load, 
and reducing typos. (2) The TypeBoard plus further improves the 
TypeBoard’s typing speed by 8.51%, outperforming the ordinary 
tablet keyboard by 21.19%. Compared with the TypeBoard, the Type-
Board plus has the advantages of improving typing accuracy and 
reducing pause time. Results show that identifying unintentional 
touch on touchscreen keyboard improves efciency and usability, 
and mediately allows touch typing on the touchscreen. 

6 DISCUSSION 

6.1 Why not deep learning? 
In this paper, we used classical machine learning methods (SVM) 
to solve the problem. We did not use deep learning. The prevention 
of unintentional touch is a fundamental and underlying function 
on touchscreen devices, requiring fast and low-power solutions. 
Deep learning, as a computationally intensive tool, does not meet 
the requirement. For this reason, we argue that classical machine 
learning methods are more practical for the problem. 

6.2 The iterative method. 
A lightspot of this paper is the iterative process to solve the prob-
lem, i.e., we developed a initial TypeBoard, then conducted user 
experiment on it, and fnally improved the technique by using the 
latest dataset. Because the relationship between a technique and the 
user behavior on it is a "chicken and egg" problem, most previous 
studies explored user behaviors on devices with no feedback (like 
our study one) [6, 31, 40] or substituted feedbacks [29, 52]. We ar-
gue that the iterative method deserves more attention. In our work, 
the user behaviors in study two (with feedback) are diferent from 
those in study one (without feedback). The model trained by the 
latest dataset also performed better. That is, the iterative process 
improved our technique and helped to gain deeper insight into the 
user behavior. 

6.3 Other ways to improve the detection? 
First, we can leverage the keyboard layout details as a basis for un-
intentional touch detection, e.g., when a touch does not fall on any 
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button, it has a greater probability of being an unintentional touch. 
Second, we can use the language model as a priori knowledge. The 
Bayesian decoder is widely used to predict users’ desired words 
from the vocabulary [18, 20, 23, 39]. The decoder can also calculate 
the probability distribution of the subsequent touch. When a touch 
falls on the low probability button, it is more likely to be an unin-
tentional touch. In this paper, our proposal leveraged neither the 
keyboard layout nor the language model because we explored the 
general method to solve the unintentional touch problem. 

6.4 Language dependence of the TypeBoard. 
Because all participants spoke Chinese as their frst language, our 
studies were conducted in Chinese. To achieve the best performance 
in other languages, we suggest a reproduction of our study two on 
the target language, and using (1) the existing feature vector and 
(2) the new dataset to retrain the model. 

(1) Why the existing feature vector is adequate? The Chinese 
input method was comprehensive. We observed various un-
intentional touch cases in the study, which helps us design 
the feature vector thoughtfully. There are many keyboard 
layouts (e.g., English, German, France, and Russian) on which 
users type directly to input characters. The orthography used 
for Chinese or other East Asian languages (e.g., Japanese and 
Korean) requires special input methods. Users narrowed 
down the range of possibilities by entering the desired char-
acter’s pronunciation and then selected the desired ideogram. ACKNOWLEDGMENTS 
Generally speaking, user behaviors in Chinese text entry 
tasks are more diverse. 

(2) Why we suggest a reproduction of study on the target lan-
guage? In study two, we found that the typing behavior 
in details (e.g., the frequency of each kind of unintentional 
touch) signifcantly impacted the model training results. We 
believe there is typing behavior diference in diferent lan-
guages, so adapting to the target language should improve 
the TypeBoard performance. 

6.5 The TypeBoard plus vs. touchscreen 
overlays. 

The TypeBoard plus enables touch typing on tablets by allowing 
users to rest their fngers on touchscreens. There are other solutions 
to support the fnger resting on the touchscreen. TouchFire [48], 
SLAP Widget [50], and the Sensel Morph [4] ofer an overlay on the 
touchscreen. Only keystrokes are transferred to the touchscreen by 
a mechanical structure, and other touches are blocked. The Type-
Board plus has two advantages compared to the touchscreen over-
lay solution. First, we can add tactile landmarks on the TypeBoard 
through built-in devices such as deformable screens [2] and change-
able surface texture [5, 9, 33], while the touchscreen overlay is an 
external object. Second, the tactile landmarks on the TypeBoard 
were only 0.05 mm thick. Users can perform text input, and cursor 
control in the same space [28], which reduces task-switching costs 
and improves efciency. In contrast, the touchscreen overlay bumps 
are much thicker, preventing users from using the touchscreen as a 
trackpad. 

6.6 Other ways to improve the user experience? 
First, in the experiment, we provided audio feedback for each key-
stroke. Previous work showed that the tactile feedback of a click 
could also improve the accuracy and speed of typing [37]. In the 
future, we can use vibration to simulate physical buttons’ tactile 
feedback, similar to the MacBook Trackpad. Second, the TypeBoard 
users cannot directly press keys when their fngers are resting. We 
should enable this feature in the future. 

7 CONCLUSION 
We proposed TypeBoard, a pressure-sensitive touchscreen keyboard 
that prevents unintentional touch with an accuracy of 98.88%. Such 
a solid ability to prevent unintentional touch changes the user’s 
behavior. Users are willing to rest their fngers on the TypeBoard, 
performing 40.83 unintentional touches every 100 keystrokes, most 
of which are prevented. The evaluation showed that the TypeBoard 
improved the touchscreen keyboard’s typing speed by 11.78%. Un-
der the premise that users could rest their fngers on the touch-
screen, we added tactile landmarks on the keyboard to enable touch 
typing. The tactile landmarks improved the TypeBoard’s typing 
speed by 8.51%, outperforming the ordinary keyboard by 21.18%. 
The results show that unintentional touch prevention improves 
the touchscreen keyboard’s usability from many aspects, including 
avoiding fatigue, reducing error rates, and mediately enabling touch 
typing. 

This work is supported by the Natural Science Foundation of China 
under Grant No. 61521002, and National Key R&D Program of China 
No. 2019AAA0105200, and also by Beijing Key Lab of Networked 
Multimedia, the Institute for Guo Qiang, Tsinghua University, Insti-
tute for Artifcial Intelligence, Tsinghua University (THUAI), and 
Beijing Academy of Artifcial Intelligence (BAAI). 
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