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Figure 1: (a) Physical keyboard users rest their fingers on the home rowkeycaps to align fingers by tactile feedback. (b) ResType
transfers this behavior to tablets (simulated by a Sensel Morph touchpad), allowing users to rest their fingers on the touch-
screen. (c) ResType recognizes resting fingers on the home row and adapts the virtual keyboard accordingly. Users can then
locate keys without visual attention and touch type efficiently. (d) ResType potential application: the user is composing a short
paragraph based on the lower picture. In a traditional tablet, the soft keyboard will block the image. While using ResType,
the user can touch type directly on the invisible keyboard and see the picture at the same time, without worrying about the
occlusion problem.

ABSTRACT
Text entry on tablet touchscreens is a basic need nowadays. Tablet
keyboards require visual attention for users to locate keys, thus
not supporting efficient touch typing. They also take up a large
proportion of screen space, which affects the access to informa-
tion. To solve these problems, we propose ResType, an adaptive
and invisible keyboard on three-state touch surfaces (e.g. tablets
with unintentional touch prevention). ResType allows users to rest
their hands on it and automatically adapts the keyboard to the rest-
ing fingers. Thus, users do not need visual attention to locate keys,
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which supports touch typing. We quantitatively explored users’
resting finger patterns on ResType, based on which we proposed
an augmented Bayesian decoding algorithm for ResType, with 96.3%
top-1 and 99.0% top-3 accuracies. After a 5-day evaluation, ResType
achieved 41.26 WPM, outperforming normal tablet keyboards by
13.5% and reaching 86.7% of physical keyboards. It solves the oc-
clusion problem while maintaining comparable typing speed with
current methods on visible tablet keyboards.
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1 INTRODUCTION
Text entry is a basic task in tablet interaction - people type to write
emails, surf the Internet, chat with friends, etc[13, 20, 35]. However,
typing on tablets is inefficient compared with physical keyboards
[13, 42, 46]. Firstly, tablet keyboard users constantly switch visual
attention between the input area and the keyboard to locate keys,
which affects input speed [42]. In comparison, physical keyboards
provide tactile landmarks for users to align their fingers, thereby
enabling efficient touch typing without visual attention [47]. Sec-
ondly, soft keyboards on tablets occupy large screen space. Users
have to constantly fold and expand the keyboards to access infor-
mation, which reduces typing performance in context-dependent
text entry tasks, such as chatting or composing emails [45, 50].
These problems could be solved by an external physical keyboard,
but it also increases the hardware weight and cost and is not con-
venient for mobile office. As a result, designing text entry methods
on tablets that do not require visual attention and screen space is
worthy of exploring.

In literature, two studies were conducted respectively to reduce
tablet keyboard visual attention and occlusion. TOAST enables ten-
finger touch typing on an invisible tablet keyboard [42]. But it
adapts the keyboard to the touchpoint clouds of the 10 latest input
words.This adaptive strategy requires a warm-up period for the de-
coding algorithm to reach the maximum accuracy, which cannot
deal with fast and sudden hand movements (on a large surface or
in multiuser scenarios). Sun et al. designed two low-occlusion key-
boards by displaying only a few keys or lines [45].The study shows
users can access more information and perform less scrolling. It
reduces distraction in two applications: chatting and taking notes,
achieving a better interaction experience. However, users need to
locate keys using the remaining landmarks, which still requires vi-
sual attention and occupies screen space.

In this paper, we propose ResType, a non-occlusion and adap-
tive keyboard that supports touch typing on three-state touch sur-
faces (i.e. surfaces that can distinguish intentional touching, rest-
ing and releasing states), like tablets that can prevent unintentional
touches. ResType has a completely invisible keyboard, which does
not need visual attention and solves the occlusion problem natu-
rally. To support touch typing, ResType adapts the keyboard to
users’ hands, so users do not need to locate keys by visual atten-
tion. Anytime during touch typing, users can rest their hands on
ResType, imagining their fingers on the home row of the virtual
keyboard.This process is defined as “calibration” for convenience
in this paper. Then, ResType recognizes the resting fingers and
adapts the keyboard accordingly. It also uses an augmented Bayesian
decoder to predict users’ input, thus not requiring precise touch
typing. Users only need to know the approximate key locations to
touch type on ResType. This design leads to three research ques-
tions: RQ1: What is users’ calibration behavior and how to detect
it? RQ2:How to decode users’ input with calibration? RQ3:What
is the typing performance of ResType?

To support calibration, we first followed TypeBoard [20] to pre-
vent unintentional touches, allowing users to rest their fingers on

ResType without triggering unwanted responses. TypeBoard used
contact data with diverse features (e.g. area, ellipticity, displace-
ment, pressure, intensity) to train an SVM model. Each contact
was labeled as intentional or not for the model to reject uninten-
tional touches. ResType needs to recognize resting touchpoints to
support calibration, so we leveraged the unintentional touch pre-
vention feature of TypeBoard directly, and implemented ResType
on the same hardware as TypeBoard (a Sensel Morph touchpad,
Figure 1b). However, other core features of ResType (statistical de-
coding and adaptive keyboard) are independent of TypeBoard. In
general, though not supported by most commercial tablet touch-
screens currently (section 9), ResType can be implemented on any
three-state touch surfaces. If a pratical tablet can disambiguate be-
tween resting and intentional touches as well, ResType will not
need the external touchpad (Figure 1 (d)).

Then, we designed three user studies to answer the research
questions respectively. To answer RQ1, we conducted study one
to explore the statistical properties of calibration. Participants per-
formed touch typing and calibration on ResType with no feedback,
imagining the keyboard could adapt to resting fingers. We quanti-
tatively analyzed the resting finger patterns and frequencies, based
on which we developed calibration detection and keyboard fitting
algorithms. In answering RQ2, we designed study two to collect
users’ typing data with calibration. Participants typed on ResType
with asterisk feedback and calibration detection enabled. The typ-
ing data were used to fit the touch model under calibration and
optimize the decoding algorithm. We achieved 96.3% top-1 and
99.0% top-3 accuracies at last (the top-N accuracy refers to the prob-
ability that a target word is within the most probable N words
predicted by the decoder). For RQ3, we compared ResType per-
formance with users’ inherent typing ability and state-of-the-art
methods (i.e. unintentional touch prevention and statistical decod-
ing) on a fixed and visible keyboard through a 5-daywithin-subject
evaluation. On day 5, ResType achieved 41.26 WPM, outperform-
ing tablet keyboards by 13.5% and reaching 86.7% of physical key-
boards. It solved the occlusion problem while maintaining com-
parable typing speed with current methods on visible tablet key-
boards. We then designed a follow-up study to investigate users’
gaze switching behavior on ResType. It turned out that ResType
reduces gaze switching between the input area and the keyboard
significantly compared with visible tablet keyboards. We also pro-
posed several potential applications of ResType on tablets, dual-
screen laptops, smart surfaces, and AR/VR, which is discussed in
detail in section 8.5.

Our contribution in this paper is two-fold:

(1) We are the first to transfer calibration from physical key-
boards to tablets with unintentional touch prevention or
other three-state touch surfaces (i.e. users could rest their
hands on the virtual keyboard to calibrate its position, sim-
ilar to how they use physical keyboards). We also modeled
the calibration behavior by quantitatively analyzing rest-
ing finger patterns and frequencies, based on which we pro-
posed a new adaptive keyboard design that solved the visual
attention and occlusion problems on tablets.

(2) We improved the augmented Bayesian decoding algorithm
by introducing the touch model under calibration, which
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achieved comparable typing speed with current methods on
visible tablet keyboards.

2 RELATEDWORK
Wewill review relatedwork about adaptive keyboards, low-occlusion
keyboards, and statistical decoding algorithms.

2.1 Adaptive Keyboard
Tablet soft keyboards are not restricted by the hardware, which can
have a changeable layout, adapting to users’ input languages, typ-
ing postures, hand positions, etc. Considering the language model,
touchpoint distribution varies given the previous input sequence.
Yin et al. andGunawardana et al. changed key sizes in the keyboard
for users to tap keys with higher frequencies more easily [22, 48].
Faraj et al. and Gkoumas et al. maintained the keyboard layout
but enlarged or highlighted keys with higher probabilities dynam-
ically for the next entry [3, 14]. Findlater et al. and Schoenleben
et al. leveraged personalized touch models to decode users’ input
[12, 40]. Himberg et al. and Baldwin et al. further explored online
personalization for key size and position adaptation [7, 23]. These
strategies reduced the effort of locating keys, while still maintain-
ing the overall keyboard position. Considering the typing posture,
researchers found howusers hold the device affects the touchmodel
[6]. Based on this fact, ContextType and iGrasp changed the touch
model or keyboard layout respectively to fit different typing pos-
tures [9, 16], which require posture sensing as a prerequisite [17].
Researchers also designed relative input systems, which assume
the initial keyboard position is unknown and only use relative
touchpoint positions to decode users’ input [28, 31, 37].Theseworks
allow users to type anywhere on the touchscreen, but lack the in-
formation of keyboard position, which leads to low decoding accu-
racy.

In literature, a more direct adaptive design is to make the key-
board adapt to users’ hands [10, 24, 27, 39]. BrailleTouch used the
combinations of 6 keys to input [39]. Hirche et al. placed 12 buttons
under users’ fingers and mapped each button with several charac-
ters to input [24]. LiquidKeyboard and TapBoard proposed a design
that the keyboard being rearranged to fingers when users rest their
hands on the tablet [10, 27] (themost similar to ResType). However,
all the designs need unintentional touch prevention as a prerequi-
site, so that users’ fingers could be placed on the tablet without
unwanted responses. As a result, BrailleTouch and Hirche et al.
used special gestures to avoid unintentional touches. LiquidKey-
board did not implement unintentional touch prevention and the
adaptive keyboard. TapBoard used a threshold method to filter un-
intentional touches with an accuracy of 97%, but not implemented
the adaptive keyboard either. TypeBoard [20] recognizes uninten-
tional touches with higher accuracy (98.88%). We proposed a fully
functional adaptive keyboard ResType leveraging this advantage.
ResType adapts the keyboard to resting fingers after calibration, so
that the keyboard position can be determined before typing, which
also compensates for the artifact of relative models. Based on this
design, users can type anywhere on the tablets with high decoding
accuracy.

2.2 Low-Occlusion Keyboard
Tablet soft keyboards occupy large screen space, affecting the user
experience of accessing information and typing [37, 45, 49]. Re-
searchers adopted different strategies to minimize the keyboard
screen space. BrailleTouch, H4-Writer, and Senorita introduced chorded
typing methods to preserve only 2 to 6 keys [33, 36, 39, 44]. They
encoded each character with a key combination (e.g. Huffman cod-
ing) for typing, which is hard to learn and leads to low input speed
(14 to 23 WPM). Green et al., 1LineKeyboard and ThumbStroke
reduced the learning burden by mapping the QWERTY layout to
home row vertically [19, 30], or arranging the remaining keys in
alphabetical order [29], which still changed the QWERTY layout.
RearKeyboard, SandwichKeyboard, BackKeyboard, and Buschek et
al. moved the keyboard to the rear of devices [4, 8, 26, 41].This strat-
egy successfully freed the screen space, but users need to type on
the back with both hands from the left and right sides. It split the
QWERTY layout and rotated it by 90 degrees to fit the finger orien-
tations, which is still unnatural. Sun et al., Arif et al., NaviKey, and
KlearKeys kept the entire QWERTY layout on the screen, while
only displaying a few keys or transparentizing the key background
[4, 11, 43, 45], which further reduced the learning burden, but not
eliminated the occlusion completely.

Researchers further designed completely invisible keyboardswhile
maintaining the entire QWERTY layout. Users could type on these
systems by muscle memory and input decoding. BlindType and
Zhu et al. developed invisible keyboards on smartphones [31, 50].
TOAST and Yoo et al. moved them to larger tablets [42, 49]. These
works achieved both the lowest learning effect and keyboard oc-
clusion by keeping the QWERTY layout and hiding the entire key-
board respectively. ResType is also based on these two strategies.
The difference with prior work is that we proposed a new adaptive
strategy and combine it with the decoding algorithm, thus achiev-
ing a higher decoding accuracy.

2.3 Statistical Decoding Algorithms
The Bayesian decoder [18] is widely used in text entry when it’s
difficult to locate keys precisely. It requires the probability distri-
bution of input words (i.e. language model) and touchpoints (i.e.
touchmodel), which are used to predict themost likely inputwords
from a predefined vocabulary. The classical Bayesian decoder was
first proposed by Goodman et al. [18] in 2002. It has been widely
used in touchscreens, wearable devices, and ubiquitous keyboards
(in-air or on any surface) [21, 38, 42].

For invisible keyboards, users cannot locate keys precisely, which
brings greater variance in the touch model. A relative touch model
was adopted to address this issue [31, 37, 42]. It was first proposed
by Rashid et al. [37]. They assumed the keyboard position is com-
pletely unknown and used the relativemodel solely, which achieved
only 48.5% top-3 accuracy. BlindType [31] tested the relativemodel
on mobile phones using one thumb and reached 95.9% top-5 accu-
racy. TOAST [42] proposed an adaptive keyboard and used the ab-
solute model for the first touchpoint in each word and the relative
model for the other, which achieved 92% top-1 and 98% top-3 accu-
racies in the general-relative model (not personalized). It showed
that the absolute model is useful when the keyboard position is
adaptive to users.
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In ResType, we combined the absolute and relative models and
reached the highest prediction accuracy (96.3% top-1, 99.0% top-3,
not personalized).The details of the ResType decoder are described
in Section 6.

3 RESTYPE DESIGN
In this section, we will describe the overall design of ResType to
give readers a big picture of ourwork. Note that some design choices
came from the iterative process of user studies. Readers can find
these details later.

3.1 Apparatus

Figure 2: The apparatus used in user studies. Users type on
ResType, which is implemented on a Sensel Morph touch-
pad. ResType is connected to a MacBookPro that shows the
GUI feedback.

Figure 2 shows the apparatus used in user studies. We imple-
ment ResType on a Sensel Morph touchpad [2], which contains
185 × 105 square sensors with 1.25mm width. Each sensor senses
32000 pressure levels, ranging from 5g to 5kg. The touchpad pro-
vides multiple contact positions, timestamps, and pressures at 50
FPS. It is connected to a MacBookPro 2021, which shows the GUI
feedback (Figure 3). Note that the pressure is only used to identify
unintentional touches following TypeBoard [20].The adaptive key-
board, statistical decoder, and gesture designs in ResType do not
need pressure information.

3.2 Keyboard Layout and GUI Design
Figure 3 shows the keyboard layout and the general GUI design
(small details are changed for different user studies). To benefit
users who are not familiar with the standard touch typing method,
we followed the split keyboard design as TOAST [42]. We set two
virtual keyboards for two hands respectively, denoted as the “left-
hand” and “right-hand” keyboards. We split 26 letters into “left,
middle, and right” zones (colored with red, purple, and blue). The
middle zone belongs to both keyboards. We used the same key size
(19.0mm) asMacBookPro. A space keywhose left, right and bottom
borders are extended to infinity is placed a half key size below the

Figure 3: The keyboard layout and GUI of the final ResType.
Users can only input 26 English letters and “space” in
ResType. The orange annotations illustrate the keyboard
range, which is linearly mapped with the touchpad sensing
area and not shown to users.

third row [42]. We only considered keyboard translation, but not
rotation and scaling (explained in section 8.3). Therefore, the two
keyboard positions can be represented by fitting the “F” and “J” key
positions.

The GUI shows the target phrase, the input area, and the key-
board layout from top to bottom. Input phrases are automatically
switched to the next at the end of each one. We use green and
red to indicate the correctness of input words. The keyboard lay-
out in GUI is only useful for users who are not familiar with key
positions (it was displayed for all users in studies to control this
variable). Skilled touch typists could hide the layout to save screen
space in real use. Besides, it shows the resting finger positions in
calibration, which are moved to the home row by subtracting the
offset between the actual and standard keyboard positions. It does
NOT show any touchpoint positions during typing.

3.3 User Operation
Users can perform the following operations to input text using
ResType:

(1) Calibration: users rest their hands on ResType while imag-
ining their fingers are placed on the home row of the vir-
tual keyboard. ResType updates keyboard positions to two
hands immediately (with 100ms latency).

(2) Touch typing: when the keyboards are calibrated, users can
touch type normally leveraging muscle memory from phys-
ical keyboards. Before finishing a word, the closest key to
each touchpoint will be shown.

(3) Deletion: users can swipe left to delete a word (the continu-
ous letter sequence at the end).

(4) Selection: ResType predicts themost likely threewordswhen
users input a complete word and tap the space key. ResType
selects the top-1 candidate by default while the top-2 and
top-3 candidates are shown upper and lower than it. Users
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can change the selection by touching the touchpad and swip-
ing up or down. The selected word will be displayed in real-
time. And users confirm the selection by releasing their fin-
gers from the touchpad.

ResType uses intentional touches for touch typing and filters out
gestures mentioned above for calibration, deletion, and selection.
Unintentional toucheswithout any interactive intentwill not cause
any responses.

4 STUDY ONE: CALIBRATION BEHAVIOR
Understanding calibration behavior is the basis of ResType. To quan-
titatively analyze the resting finger patterns and the touchpoint
geometric relationship within these patterns, we designed an imag-
inary text entry task to collect users’ calibration behavior data.
Based on the statistical properties of these data, we developed cal-
ibration detection and keyboard fitting algorithms to support the
adaptive keyboard.

4.1 Design and Procedure
We recruited 16 participants from the campus (aged from 18 to 24,
M = 21.63, SD = 1.63, 4 females). We explained all ResType features,
especially unintentional touch prevention and adaptive keyboard
design to them. In the imaginary task, users performed touch typ-
ing and calibration alternately. The system provided no feedback
for any operations. The study for each user contained 5 blocks.
Each block contained 15 phrases that were randomly sampled from
the MacKenzie phrase set [32]. Each phrase was displayed for 8s,
followed by 4s of black screen. Users were instructed to keep touch
typing the phrases during displaying periods while performing cal-
ibration during hiding periods. This procedure basically simulated
a normal touch typing and thinking scenario. All touchpad frames
were recorded for analyzing the calibration patterns. We also set
an RGB camera in the front of users’ hands to record the fingertips
as the ground truth. We further manually labeled each touchpoint
in the hiding periods with its finger by checking the video. Each
user spent 30 minutes and was paid $8 in the study.

4.2 Result
Wecollected 1329 times of calibration actions in total. All the touch-
points were generated by 10 fingertips and the hypothenar emi-
nence. In Figure 4, all frequencies are calculated from the occur-
rence number of each touchpoint or pattern divided by the total
number of calibrations. The calibration patterns include:

(1) Normal pattern: eight fingertips (except two thumbs) on the
home row (i.e. the “ASDFJKL;” keys).

(2) Thumb touching: two thumbs resting on the touchpad.
(3) Hypothenar eminence touching: the hypothenar eminence

causing unintentional touches.
(4) Little fingermissing: users’ little fingers not on the keyboard.
(5) The combination of the above patterns.

Since patterns b2, b3, and b4 are not independent with each other
(only b1 is), the sum of pattern frequencies exceeds 100%. And the
combined frequency of b2, b3, and b4 (at least two of them occur
at the same time) is 10.2%.

Figure 4:The frequencies of calibration touchpoints and pat-
terns. Green touchpoints are on the home row while red
ones are not. Touchpointswith dotted lines are optional.The
pitch angle distribution demoed in (a) is universal for all
touchpoints.

4.3 Adaptive Keyboard
In ResType, the left-hand and right-hand keyboards follow users’
hands after calibration. To achieve this, we first designed algorithms
to filter out touchpoints on the home row based on the calibration
patterns, then used these touchpoints to fit the keyboard position.

From users’ calibration behavior, we have several observations:
OB1: the index finger, middle finger, and ring finger of two hands
touch the keyboard in most cases (>99.8%). OB2: the fingers of
each hand on the home row form a flat trapezoid. We statistically
explored the geometric relationship of the touchpoints and found
that the pitch angle of neighboring touchpoints within the home
row (in degrees, M = 17.8, SD = 13.2, MIN = 0.0, MAX = 62.0, see
Figure 4 (a)) are significantly smaller than the pitch angle between
an unintentional touchpoint and its adjacent ones on the home
row (in degrees, M = 81.8, SD = 6.2, MIN = 60.5, MAX = 90.0).
OB3: unintentional touches from thumbs and thenar eminence are
relatively far away from the home row (minimum distance in cm
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within home row: M = 2.26, SD = 0.46, between home row and oth-
ers: M = 5.15, SD = 1.14, both of them follow normal distributions).

Inspired by these observations, we designed our finger detection
algorithm to identify fingers on the home row:

(1) For all horizontal adjacent touchpoint pairs, if the pitch an-
gle between the two points exceeds 60.0 degrees, remove the
lower one (OB2. We chose 60.0 degrees to reject all uninten-
tional touches while recognizing 99.8% calibration), which
filters out thumb and thenar eminence touches.

(2) For each touchpoint, find the closest touchpoint to it. Keep 8
touchpoints at most with the smallest distance (OB3), which
filters out touches that are far away from the home row.

(3) Now only 6 to 8 touchpoints will remain. We split these
touchpoints from the larger gap in the middle. Then the
touchpoints of the left and right hands are found.

To prevent accidental patterns that happen to pass the algo-
rithm (e.g. wiping the keyboard with hand palms), we set a 100ms
smoothing window (i.e. 5 frames). Only when all resting touch-
points in the window have appropriately the same positions, will
they be regarded as a valid calibration. Therefore, the calibration
latency ranges from 100ms to 120ms.

To fit the left-hand and right-hand keyboards based on the rest-
ing fingers, we adopted the following strategy: the x coordinate
of F or J was set to the x value of the index finger, while the y
coordinate was set to the average y values of all fingers in each
hand. While touch typing, we separate the left-hand and right-
hand touchpoints by the distance to the fitted F and J keys.Thenwe
subtract the offset between the standard and fitted F or J positions
from the actual touchpoints to find the positions on the standard
keyboard layout.

5 STUDY TWO: DECODER DESIGN
In this section, we first introduced ResTypeStatic for comparison
with ResType. Since users’ touchpoint distribution may be differ-
ent, we collected users’ typing data on ResType and ResTypeStatic
respectively, based on which we finalized users’ touch model and
optimized the statistical decoding algorithms on the two keyboards.

5.1 ResTypeStatic Keyboard
To compare the typing performance between ResType and state-of-
the-art tablet keyboards with a visible and fixed layout, we intro-
duced ResTypeStatic, as shown in Figure 5. Our goal was to only
investigate the influence of calibration and adaptive keyboard lay-
out on typing, while excluding other factors of ResType. ResType-
Static has exactly the same features (unintentional touch preven-
tion, statistical decoding, gesture operations, and GUI design) as
ResType, except that it has a fixed and visible layout and does not
support calibration. We used the same touchpad for ResTypeStatic
and drew the keyboard layout using white marker pens. To our
knowledge, keyboards that both support unintentional touch pre-
vention and statistical decoding have not been explored yet.

5.2 Design and Procedure
We recruited 16 participants from the campus (aged from 19 to
21, M = 20.38, SD = 0.62, 2 females). They had never used ResType
before.We designed 4 text entry blocks for each user. In each block,

Figure 5:TheResTypeStatic keyboard layout is drawn on the
Sensel Morph touchpad, whose layout is the same as the ini-
tial keyboard layout in ResType before calibration.The area
below the bottom line is the space key.

users transcribed 50 phrases that were randomly sampled from the
MacKenzie phrase set [32]. They first took a warm-up block with
10 phrases to get familiar with the operations and were forced to
have a 2-minute break between each block to relieve fatigue.

In this study, we implemented the same unintentional touch
prevention as TypeBoard [20]. We also implemented calibration
detection based on study one to collect calibrated typing data on
ResType. During typing, we only provided asterisk feedback (an as-
terisk would appear in the input area each time users triggered an
intentional touch) to users. Since users might be cautious about un-
intentional touches using touchscreens [20], we hid each phrase in
GUI by default. Users needed to perform calibration first to reveal
the phrase before typing.This design encouraged users to calibrate
and generated calibration at least once for each phrase. They were
instructed to type as fast and as accurately as possible. We also re-
quired users to delete incorrect words if they found a mistake by
themself. Each user spent an hour and was paid $15 in the study.

Then we collected the typing data on ResTypeStatic. We found
users’ touchpointswere significantlymore concentrated on ResType-
Static by pilot studies, so fewer data were needed to determine the
touch model. We recruited 8 users (aged from 20 to 25, M = 21.25,
SD = 1.91, all male) and designed 1 warm-up (10 phrases) and 1 for-
mal block (50 phrases) for each user. All procedures are the same
as on ResType.

5.3 Result
To simplify the problem, we only focus on the touchpoint distri-
bution of the 26 letters. We finally collected 76563 touchpoints on
ResType and pooled them together from all users. The touchpoint
cloud of each key appropriately follows a Gaussian distribution. As
shown in Figure 6, the touchpoints are considerably more concen-
trated on ResTypeStatic than on ResType, because users could see
the visible layout during typing to locate fingers more precisely on
ResTypeStatic [13]. Figure 6 (b) shows the uncalibrated clouds on
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Figure 6: The 95% confidence ellipses of the touchpoint
clouds on ResTypeStatic and ResType. Warmer colors indi-
cate higher key frequencies. The two black points on each
subplot represent the standard F and J centroids.

ResType, while the clouds in Figure 6 (c) are calibrated. One-way
ANOVA shows both the standard deviations on x and y axis for
all keys in (a) are significantly smaller than the clouds in (b) (x:
𝐹1,50 = 390.27, 𝑝 < 0.001, y: 𝐹1,50 = 252.62, 𝑝 < 0.001). While only
the standard deviations of y axis in (c) are significantly smaller
than the clouds in (b) (𝐹1,50 = 282.64, 𝑝 < 0.001). The standard
deviations of x axis do not change significantly by calibration. The
result shows that calibration could help users locate keys more pre-
cisely on ResType, which proves the effectiveness of the adaptive
strategy.

6 RESTYPE DECODER
Weadopted the augmented Bayesianmethod to design the ResType
decoder. Classical Bayesian decoder uses a pre-trained touchmodel
and language model to decode users’ input. The touch model re-
gards users’ input as a sequence of independent touchpoints, named
as the absolute model in literature [31, 42]. Researchers introduced
the relative model to better decode the correlation in the input se-
quence. It was also used in situations when the initial keyboard
position is unknown [21, 31, 37, 42]. Inspired by these algorithms,
we brought the adaptive keyboard design into the touchmodel and
developed our augmented Bayesian decoder.

6.1 Classical Bayesian Decoder
The input decoder is used to predict the input word𝑊 given the
input sequence 𝐼 . The classical Bayesian approach was first intro-
duced by Goodman [18]. It predicts the most likely word in a pre-
defined dictionary as follows:

𝑃 (𝑊 |𝐼 ) =
𝑃 (𝐼 |𝑊 ) × 𝑃 (𝑊 )

𝑃 (𝐼 ) ∝ 𝑃 (𝐼 |𝑊 ) × 𝑃 (𝑊 ) (1)

where 𝑃 (𝑊 ) is the languagemodel, which describes the probability
of the word𝑊 . And 𝑃 (𝐼 |𝑊 ) is the touch model, which uses Gauss-
ian distribution to estimate the probability of the input sequence
𝐼 given the word𝑊 . For the 𝑘th input word, researchers use the
n-gram language model to calculate the conditional probability:

𝑃 (𝑊 ) = 𝑃 (𝑊𝑘 |𝑊𝑘−𝑛+1 ...𝑊𝑘−1) (2)

For the input touchpoint sequence 𝐼 = 𝑖1𝑖2 ...𝑖𝑛 and a word with the
same length𝑊 = 𝑤1𝑤2 ...𝑤𝑛 , classical methods treats each touch-
point as independent to each other:

𝑃 (𝐼 |𝑊 ) =
𝑛∏

𝑘=1

𝑃 (𝑖𝑘 |𝑤𝑘 ) (3)

This method requires a touch model for each key and the absolute
keyboard position.

6.2 Relative Touch Model
The biggest drawback of the absolute touch model is that it ignores
the correlation between successive touchpoints, also known as the
reference effect in literature [45]. For example, when inputting the
same letter in a word like “success”, the touchpoint of the second
“c” would be closer to the first one, since users do not need to locate
the same key twice.Thus, the conditional distribution of the second
“c” will not obey the general distribution in the absolute model.The
relative model uses the relative position in successive touchpoints
as follows:

𝑃 (𝐼 |𝑊 ) =
𝑛∏

𝑘=2

𝑃 (𝑖𝑘 − 𝑖𝑘−1 |𝑤𝑘−1,𝑤𝑘 ) (4)

This model calculates the conditional probability of a touchpoint
only by the offset to the previous touchpoint. It will be invalid if
the input length equals 1 and cannot deal with word collisions like
“hit” and “joy” (their relative positions on the QWERTY layout are
the same).

6.3 ResType Decoder Design
We used the bigram language model in ResType [25]. It was re-
placed by the unigram model for the first word in a phrase. The
dictionary size is 10000.

For the touch model, we propose our hybrid decoding method
in ResType by combining the advantages of absolute and relative
models. We assume the touchpoints of each key follow Gaussian
distribution. We need 5 parameters to describe the touch model
for each key: the means and standard deviations of x and y, and
their correlation coefficient. As a result, we totally need 26 × 5 =
130 parameters for the absolute model and 26 × 26 × 5 = 3380
parameters for the relative model. We calculated these parameters
directly from the typing data in study two.

In ResType, we define two 2-dimensional keyboard spaces, the
actual space, and the standard space. The actual space refers to the
actual touchpad sensing area while the standard space refers to
the standard QWERTY layout. All touchpoints will be calibrated
as relative to the standard space by subtracting their offset. We fit
the left-hand and right-hand keyboards by the centroids of “F” and
“J” keys in the actual space, denoted as 𝑝𝑎,𝐹 and 𝑝𝑎,𝐽 . While their
standard positions are 𝑝𝑠,𝐹 and 𝑝𝑠,𝐽 . For each touchpoint in the
actual space 𝑝𝑎 , we first determine its corresponding hand by the
distances to 𝑝𝑎,𝐹 and 𝑝𝑎,𝐽 (touchpoints closer to 𝑝𝑎,𝐹 will be fit to
the left-hand keyboard, similar for 𝑝𝑎,𝐽 ). And calculate the offset
to the standard space 𝑜 = 𝑝𝑎,𝐹 − 𝑝𝑠,𝐹 or 𝑜 = 𝑝𝑎,𝐽 − 𝑝𝑠,𝐽 .

Based on these two spaces, the touch model is described by:

𝑃 (𝐼 |𝑊 ) = 𝑃 (𝑖1 |𝑤1) +
𝑛∏

𝑘=2

[𝜆𝑃 (𝑖𝑘 |𝑤𝑘 ) + (1 − 𝜆)𝑃 (𝑖𝑘 − 𝑖𝑘−1 |𝑤𝑘 , 𝑤𝑘−1) ],

(𝑖𝑘 = 𝑝𝑠,𝑘 = 𝑝𝑎,𝑘 − 𝑜𝑘 )
(5)

where we introduced 𝜆 (a constant in [0, 1]) as a weight parame-
ter to combine the absolute and relative models. In the simulation,
we found the hybrid model has better performance than either the
pure absolute or relative model.
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The ResTypeStatic decoding algorithm is the same as ResType,
except that we use a different touch model and do not have the cal-
ibration operation. In other words, the actual and standard spaces
on ResTypeStatic are the same.

6.4 Result

Figure 7: The top-1 to top-5 word-level decoding accuracy in
16-fold cross-validation.The top-1 accuracies of the pure ab-
solute and relativemodel are 94.6% and 94.7%. 𝜆 = 0.4 reaches
the highest top-1, top-3 and top-5 accuracies of 96.3%, 99.0%
and 99.4%.

We implemented the ResType decoding algorithm and tested its
performance on the typing data in study two by simulation. Since
ResType keyboards are not either fixed or entirely unknown to
users, we expected that combining the absolute and relative mod-
els could achieve better performance than the related work. In the
simulation, we focused on the influence of 𝜆 (equation 6.3) on these
two models. We performed 16-fold cross-validation on different 𝜆,
meaning that for each participant, we generated the touch models
from the other 15 participants.

Results in Figure 7 illustrate top-1 to top-5 accuracies over 𝜆.
Both the absolute and relative models achieved satisfying accuracy.
Furthermore, when combining these two models together, the ac-
curacy increased notably (1.6% to relative and 1.7% to absolute),
which was consistent with our expectation as well as the adaptive
feature of ResType. We set 𝜆 to 0.4 at last, which has the high-
est top-1 accuracy (96.3%). We also set the candidate word number
to 3, considering it is easier to select and that the top-3 accuracy
(99.0%) is significantly higher than top-1, but top-5 (99.4%) is not
than top-3.

We performed the same optimization for ResTypeStatic (subsec-
tion 5.1), which achieved 99.2% top-1 accuracy and 99.8% top-3 ac-
curacy. Its decoding accuracy is higher than ResType because users
can see the layout on ResTypeStatic, thus locating fingersmore pre-
cisely. It is consistent with the concentrated ResTypeStatic touch-
point clouds.

6.5 Summary
By now, we have fully implemented the ResType decoder. It is ben-
eficial to summarize how the decoder works in real use. We first
collected users’ typing data on ResType and ResTypeStatic to fi-
nalize the absolute and relative touch models (Section 5). Then we

proposed a hybrid decoding algorithm to fuse the touch models
and the adaptive keyboardwith calibration (Section 6).When users
touch type on ResType, they first perform calibration, after which
the offset between the actual and standard spaces is determined.
Then, users could touch type a letter sequence in a word. Only
when users finish a word and tap the space key, will the ResType
decoder use the touchpoint sequence to calculate the probability
of each word in the dictionary, and returned top-3 candidates for
users to confirm. By default, the top-1 candidate will be selected,
and users could change the input by selection or deletion in sub-
section 3.3.

7 STUDY THREE: EVALUATION
In this section, we designed a 5-day user study to evaluate the typ-
ing performance and learning effect of ResType.

7.1 Design and Procedure
The study adopted a within-subject design to compare the perfor-
mance of ResType with ResTypeStatic. We also measured users’
typing speed on physical and tablet keyboards to indicate their
typing ability. We recruited 14 participants from the campus (aged
from 18 to 30, M = 21.4, SD = 2.9, 5 females). Their typing experi-
ence and touch typing levels were first collected through a ques-
tionnaire (Table 1). The result showed that all of them are familiar
with physical and tablet keyboards (at least one cyear of using ex-
perience).

On each day, we designed 12 text entry blocks (10 phrases for
each) - 1 for physical keyboards, 1 for tablet keyboards, 5 for ResType-
Static, and 5 for ResType. We had fewer blocks for physical and
tablet keyboards because users are already familiar with these tech-
niques (i.e. no learning effect). All testing phrases were randomly
sampled from the MacKenzie phrase set [32]. We ensured all users
would type the same phrases in 5 days, the phraseswithin each key-
board are not repeated, and the phrases between two keyboards are
the same (MacKenzie phrase set only contains 500 phrases, but we
need 700 phrases for each user including warm-up blocks), but the
phrase order for each user and keyboard was randomly shuffled.
The keyboard order was also counterbalanced to avoid the learn-
ing effect problem.The software design and user operations in this
study are described in Section 3. The detailed procedures for each
day include:

(1) Typing on physical keyboard: 1 block. Participants used their
own laptop keyboards to transcribe 10 phrases using the de-
fault notepad on Windows or macOS.

(2) Typing on tablet keyboard: 1 block (counterbalanced with
physical keyboards). Participants transcribed 10 phrases us-
ing the “Notes” app on an 11-inch iPad Pro 2019.

(3) Typing on ResType: 5 blocks. Users first took a warm-up
block and then transcribed 5 blocks of phrases using ResType.
They were forced to take a one-minute break between two
blocks to relieve fatigue.

(4) Typing on ResTypeStatic: 5 blocks (counterbalanced with
ResType).The procedures are exactly the samewith ResType
except that users typed on ResTypeStatic.
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Table 1: Users’ typing experience.

Experience M SD MIN MAX
Tablet Keyboard (year) 6.1 3.5 1 12

Physical Keyboard (year) 12.2 3.8 3 18
Self-rated touch typing level (1-7) 5.5 1.3 2 7

(5) Subjective feedback: on day 1 and day 5, users rated on ResType-
Static and ResType respectively, in terms of typing speed,
accuracy, fatigue, cognitive burden, and general experience.

Each user spent an hour and was paid $15 each day in the study.

7.2 Result

Figure 8:The text entry speed (WPM) over 5 days onResType
and ResTypeStatic. Error bars indicate the standard devia-
tion.

7.2.1 Typing Speed. Text entry speed is measured in Words per
Minute (WPM) by [5]:

𝑊𝑃𝑀 =
|𝐿 | − 1

𝑇
× 60 ×

1

5
(6)

where |𝐿 | is the total length of the transcribed phrases, and T is
the time cost in seconds. We conducted a two-way RM ANOVA
test on text entry speed with keyboard and day as two within fac-
tors. If any of the variables had a significant effect (𝑝 < 0.05), we
adopted a multiple pairwise t-test with Bonferroni correction for
comparison.

Figure 8 shows the text entry speed on ResTypeStatic and ResType.
ResTypeStatic starts with 32.78 WPM (SD = 6.87) and ends with
42.07WPM (SD = 9.07, increased 28.3%), while ResType starts with
30.18 WPM (SD = 8.37) and ends with 41.26 WPM (SD = 7.91, in-
creased 36.7%). Keyboard has no significant effect on text entry
speed (𝐹1,13 = 0.69, 𝑝 = 0.42), while day has significant effect on
it (𝐹4,52 = 45.07, 𝑝 < 0.001). The interaction effect between day
and keyboard is not significant (𝐹4,52 = 1.93, 𝑝 = 0.12). For the day
factor, post hoc test shows significant effect between all day pairs
(𝑝 < 0.05) except day2-day3 (𝑝 = 0.08) and day4-day5 (𝑝 = 0.24).
The result shows comparable input speed and learning burden be-
tween ResType and the state-of-the-art tablet keyboard.

Furthermore, tablet keyboards start with 30.44WPM (SD = 7.26)
and end with 36.36 WPM (SD = 9.47, increased 19.4%). Physical
keyboards start with 44.60 WPM (SD = 12.73) and end with 47.58
WPM (SD = 12.27, increased 6.7%). Their average input speeds are
33.54 and 46.87 WPM respectively. On day 5, text entry speed on
ResType outperformed tablet keyboards by 13.5% (23.0% for the
average speed) and reached 86.7% (88.0% for the average speed)
of physical keyboards. The relative speed outperformed the prior
work [42] (66.7% of physical keyboards).

Figure 9: Uncorrected and corrected error rates (%) on
ResTypeStatic and ResType over 5 days.

7.2.2 Error Rate. We measured users’ word-level uncorrected er-
ror rate (UER) and corrected error rate (CER) on ResTypeStatic and
ResType over 5 days (Figure 9). UERmeasures the input errors that
remained in the transcribed phrases, which is calculated by the
number of uncorrected words divided by the total word number
(|𝐿 | − 1/5, the same as Equation 6). Two-way RM ANOVA shows
that keyboard has significant effect on UER (𝐹1,13 = 12.6, 𝑝 < 0.01)
but not day (𝐹4,52 = 0.97, 𝑝 = 0.43). The mean UER over 5 days
is 0.84% (SD = 1.21%) on ResTypeStatic and 1.55% (SD = 1.36%) on
ResType, which means users left 1 uncorrected error every 119.0
words on ResTypeStatic and every 64.5 words on ResType. CER
measures the input errors corrected by users intentionally, which
is calculated by the sum of errors corrected by deletion and se-
lection divided by the total word number. Both keyboard (𝐹1,13 =
69.1, 𝑝 < 0.001) and day (𝐹4,52 = 7.0, 𝑝 < 0.001) have significant ef-
fect on CER. The mean CER over 5 days is 8.35% on ResTypeStatic
and 14.09% on ResType. In all corrected errors, the proportion of
errors corrected by selection is 5.70% on ResTypeStatic and 11.33%
on ResType (selection and deletion sum to 100%).

The result shows that users made more mistakes on ResType
than on ResTypeStatic, which is consistent with study one that it
is more difficult for users to locate keys precisely on ResType due
to the invisible keyboard layout. Generally, UER on both ResType-
Static and ResType is low and acceptable.
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Figure 10: Word-level intervals (s) on two keyboards over 5
days. Error bars indicate standard deviation.

7.2.3 Visual Attention. On ResType, users do not need to switch
visual attention between the input area and the keyboard. We first
explored this effect on the time components during typing. We
measured the Word-Level Interval (WLI) in each text entry block,
which is defined as the average touch event intervals between ev-
ery two neighboring words (e.g. the WLI of “human computer in-
teraction” is the average time interval of “n→c” and “r→i”). WLI
reflects the input time delay betweenwords. Longer intervals could
be caused by extra efforts for locating keys, switching visual atten-
tion, etc. Figure 10 shows the WLI on ResTypeStatic and ResType
over 5 days. One-way RM ANOVA shows keyboard WLI has sig-
nificant difference on day 4 (𝐹1,13 = 7.65, 𝑝 < 0.05) and marginal
significant difference on day 5 (𝐹1,13 = 3.57, 𝑝 = 0.08). Day has sig-
nificant effect on WLI for both ResType (𝐹4,52 = 26.53, 𝑝 < 0.001)
and ResTypeStatic (𝐹4,52 = 19.27, 𝑝 < 0.001).

Inspired by the WLI difference, we further designed a follow-
up evaluation study to collect users’ gaze behavior during typing,
which could reveal how users’ visual attention switches when us-
ing the two keyboards. We recruited exactly the same 14 partici-
pants in the 5-day study and repeated exactly the same procedures
in subsection 7.1 one more day, except that participants wore a
gaze tracking device (Pupil Core [15]) to reveal the focus of their
visual attention, and that the keyboard layout in the GUI was re-
moved (discussed later in subsection 8.4). Pupil Core uses a world
camera and a pupil camera to show the gaze position after the
device calibration. We labeled each pair of timestamps when the
users’ gaze position left the input area to see the touchpad and re-
turned back to the input area (a gaze switch). Table 2 shows the
input speed, the times of gaze switches per block, the average time
cost of each gaze switch, and the time proportion of gaze switches
in the total input time.

This follow-up study was conducted 3 months later than the 5-
day evaluation. We recruited the same participants for the reason
that they were already familiar with ResTypeStatic and ResType,
so the gaze switching behaviorwould bemore reliable. Users achieved
40.00 WPM on ResTypeStatic (between day 4 and 5, 95.1% of day 5,
see subsection 7.2.1) and 38.87 WPM on ResType (between day 3
and 4, 94.2% of day 5), which shows that they basically maintained
the typing ability learned from the 5-day evaluation. RM ANOVA
shows both the times and proportion of gaze switching on ResType
are significantly lower than on ResTypeStatic (the average time

cost per switch is not comparable because only 5 users had at least
one gaze switch on ResType). In other words, 34.70% of users’ vi-
sual attention was not in the input area when using ResTypeStatic.
Leveraging the adaptive keyboard, ResType reduces this propor-
tion to 0.07%, which could be beneficial in scenarios when the in-
put area needs dense visual attention (e.g. shorthands).

7.2.4 Calibration Behavior. Users rested their fingers on the home
row to calibrate the keyboard position. In this study, we did not
force users to calibrate on ResType. Instead, they were instructed
to calibrate only when they needed (e.g. after moving hands signif-
icantly). We measured the left-hand and right-hand keyboard off-
sets to the standard position after calibration to explore the hand
drift effect. We also measured the calibration times, time cost, and
time proportion to explore users’ willingness to use this feature.
Table 3 lists the result in each block over 5 days.

One-way ANOVA shows day has no significant effect on all data
types. In general, the left-hand offset was 1.34 cm (SD = 0.64) and
the right-hand offset was 1.76 cm (SD = 0.68). Their standard de-
viations correspond to 1.25 cm and 1.33 cm in 95% confidence in-
tervals, which means users’ hands would drift 0.66 to 0.70 of the
key size (1.9 cm) from the key centers while touch typing. This
offset is big enough (> 0.5 key size) to trigger unwanted touches
without the adaptive keyboard. Furthermore, users calibrated 6.07
times per block (10 phrases), which means one calibration per 1.65
phrases. The average time cost per calibration is 407 ms, and cal-
ibration only takes up 2.32% of the typing time, which indicates
calibration is easily adopted by users and takes little extra effort.
In the user interview, participants also reported that the calibra-
tion behavior on ResType was very natural to them, as they all
have the habit to align their fingers on physical keyboards using
the landmarks.

Figure 11: Subjective ratings on ResTypeStatic and ResType
(integers from 1 to 7, higher is better). Error bars indicate
the standard deviation.

7.2.5 Subjective Feedback. On day 1 and day 5, we collected users’
subjective ratings on the following aspects:

(1) Speed: the keyboard input speed.
(2) Accuracy: the keyboard typing (locating desired keys) and

decoding (predicting input words) accuracy.
(3) Fatigue: the physical demand (e.g. switching visual atten-

tion). Higher scores represent lower fatigue.
(4) Cognitive burden: the mental demand (e.g. locating keys).

Higher scores represent a lower burden.
(5) General: the overall keyboard using experience.
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Table 2: Users’ input speed and gaze switching behavior on ResTypeStatic and ResType in the follow-up study. Parentheses
show standard deviations.

Keyboard Speed (WPM) Times per block Average time (ms) Proportion (%)
ResTypeStatic 40.00 (8.90) 37.81 (17.95) 878 (168) 34.70 (14.48)
ResType 38.87 (9.32) 0.09 (0.13) 907 (178, 5 users) 0.07 (0.09)
Significance 𝐹1.13 = 0.57, 𝑝 = 0.46 𝐹1,13 = 62.36, 𝑝 < 0.001 - 𝐹1,13 = 80.57, 𝑝 < 0.001

Table 3: Users’ calibration behavior on ResType over 5 days. Parentheses show standard deviations.

Day F offset (cm) J offset (cm) Times per block Average time (ms) Time proportion (%)
Day 1 1.39 (0.72) 1.92 (0.67) 6.27 (4.61) 565 (395) 2.52 (1.85)
Day 2 1.58 (0.79) 2.01 (0.82) 5.63 (3.82) 412 (201) 2.25 (1.94)
Day 3 1.37 (0.54) 1.78 (0.75) 5.83 (3.26) 388 (203) 2.23 (1.72)
Day 4 1.23 (0.54) 1.54 (0.54) 5.84 (3.33) 338 (138) 2.15 (1.47)
Day 5 1.15 (0.59) 1.56 (0.56) 6.77 (4.55) 327 (144) 2.42 (1.79)
Overall 1.34 (0.64) 1.76 (0.68) 6.07 (3.86) 407 (245) 2.32 (1.72)

We explained the meaning of each aspect to participants in detail.
Figure 11 shows the result.

A Wilcoxon signed-rank test was performed for each aspect on
keyboard and day respectively. Ratings of ResType significantly
improved over days on speed (𝑍 = −2.62, 𝑝 < 0.01), accuracy
(𝑍 = −2.27, 𝑝 < 0.05), general (𝑍 = −2.00, 𝑝 < 0.05) and mar-
ginal significantly improved on fatigue (𝑍 = −1.78, 𝑝 = 0.07) but
not on the cognitive burden (𝑍 = −0.51, 𝑝 = 0.61). Ratings of
ResTypeStatic had no significant improvement over days on all as-
pects. On day 1, keyboard has a significant effect only on accuracy
(𝑍 = −2.81, 𝑝 < 0.01), while on day 5, keyboard has a significant
effect only on fatigue (𝑍 = −2.37, 𝑝 < 0.05). The result shows that
the general ratings of ResType were lower on day 1 but improved
significantly when users learned how to use it. Also, ResType can
reduce physical fatigue as expected. The accuracy of ResType is
lower than ResTypeStatic on day 1, but can be improved as the
user learns to use it (not significant on day 5). The average general
rating of ResType is higher than ResTypeStatic on day 5, which
also shows the high usability of ResType.

8 DISCUSSION
8.1 The Performance and Learning Effect
Onday 5 of study three, participants achieved 41.26WPMonResType,
which is not very high for ten-finger typing. However, their inher-
ent typing speed is 47.58 WPM on physical keyboards, which is
far lower than prior work (e.g. 67 WPM in TOAST [42]). Therefore,
we can conclude the low text entry speed results from participants’
low typing expertise. Relatively, participants achieved 13.5% faster
WPM on ResType than on tablet keyboards, and reached 86.7% of
physical keyboards, which is a huge increase compared with prior
work (e.g. 66.7% of physical keyboards in TOAST [42]). ResType
also achieved comparable text entry speed as state-of-the-art meth-
ods on tablets, though without a visible layout. As a result, we
showed the feasibility of ResType in terms of relative performance.

In ourwithin-subject study, participants learned to type on ResType-
Static and ResType alternately in 5 days. We adopted this design to
ensure the same typing ability of ResTypeStatic users and ResType
users.The typing time on these two keyboardswas around 200min-
utes in total. The learning curve of ResType did not converge on
the last day, so we do not claim 41.26WPM as the ceiling text entry
speed. Higher speed could be achieved with more practice.

Aside from the input speed, we showed that ResType and ResType-
Static are both efficient input methods but also have strengths and
weaknesses. On ResTypeStatic, users can see the keyboard layout,
thus locating keys more precisely and erring less. On ResType,
users do not need to switch visual attention to locate keys, thus
achieving lower WLI and being more focused on the input area.
Though the two differences result in similar input speeds in our
evaluation, we believe situations that require more attention but
less accuracy are more suitable for ResType, like shorthands.

8.2 The Evaluation Study Setting
We compared the performance of ResType with ResTypeStatic in
study three for the following considerations. First, ResType con-
tains three main features: unintentional touch prevention, statisti-
cal decoding, and the adaptive keyboard. To evaluate the influence
of the adaptive keyboard, we implemented ResTypeStaticwith only
the first two features to control the variables. Second, should ResType-
Static have a visible keyboard layout?We tested the ”invisible ResType-
Static” (layout not drawn on the touchpad) in a pilot study. It turned
out users could only locate keys by trial and error and can hardly
finish the text entry tasks in a reasonable duration, so we did not
adopt this setting at last. Actually, ResTypeStatic could be con-
sidered as a visual representation of ResType. It is also closer to
the current methods on tablets. Users locate keys by vision on
ResTypeStatic and by the adaptive keyboard on ResType. The “in-
visible ResTypeStatic” does not support either, so it is unfair for
comparison.
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8.3 Keyboard Fitting
The problem of keyboard fitting involves three key factors: trans-
lation, rotation, and scaling [42]. In the final ResType, we only
considered keyboard translation, so why not rotation and scaling?
First, the rotation of users’ fingers barely changed during typing,
which is restricted by the touchpad size. Second, we found the scale
of users’ resting fingers had no correlation with the actual scale of
the touchpoint clouds. Since users cannot feel the keys on ResType,
they rest their fingers on ResType just in a comfortable way so that
the touchpoint patterns are distorted. Instead, since users have al-
ready formed muscle memory of physical keyboards, the scale of
the touchpoint clouds matches the standard keyboard layout very
well. As a result, fitting rotation and scaling by calibration did not
improve the decoding accuracy in the simulation.

8.4 The Occlusion Problem
One motivation of ResType is to hide the keyboard layout to save
screen space. To help users who are not familiar with touch typ-
ing, we displayed the standard QWERTY layout for all users in the
GUI. After user study three, we interviewed the 14 participants
whether the layout was helpful for touch typing, and only 3 users
reported so.We further informally tested its influence in the follow-
up evaluation (subsection 7.2.3). Without any hints on the screen,
users still achieved comparable input speed on ResType compared
to ResTypeStatic. For real applications, if we need to implement
ResType on touchscreens, this keyboard layout could be shrunk
and moved to a proper position (e.g. a small icon beside the input
area), or be completely hidden for skilled touch typists, such that
it would not occupy any screen space.

Aside from the GUI, users’ hands would partly block the screen
as well (Figure 1 (d)) in tablet interactions. This issue is beyond
the scope of keyboard design, as long as users still need to per-
form ten-finger touch typing on tablets. However, if the informa-
tion on the screen is sparse enough for users to see through the
gaps between fingers, like chat history, images or graphs, users
can still access these information more easily compared to tradi-
tional soft keyboards, which is also demonstrated in Sun’s work
[45]. In conclusion, though we have only removed the occlusion
from soft keyboards, we believe the invisible keyboard design in
ResType is beneficial for tablet text entry.

8.5 Applications of ResType
ResType envisions a design that the virtual keyboard on tablets
adapts to users’ hands, enabling efficient touch typing anywhere
on the surface. It does not need a visible layout and reduces vi-
sual attention switches. We propose the following applications of
ResType leveraging these benefits:

(1) Tablet computer: it can use ResType as an invisible key-
board to save screen space and reduce the cost of switching
visual attention.

(2) Dual-screen laptop [1]: a laptop containing no physical key-
board but two touchscreens inside. This design faces the
problem of unintentional touches and low input efficiency,
which could be solved by ResType effectively.

(3) Smart surface: as ubiquitous computing develops, we are
confident that much more sensors will be deployed in smart

AIoT devices in the future. ResType only needs haptic sig-
nals to identify unintentional touches and adapt the key-
board to users’ hands, which is inexpensive and easy to de-
ploy in a large scale. Haptic sensors deployed on smart sur-
faces (e.g. table tops) could support multiuser touch typing
in discussions, meetings or games, etc.

(4) AR/VR: AR/VR applications commonly leverage computer
vision to support in-air typing or render virtual keyboards
on table surfaces. However, these CV-based methods need
to track fingers, detect touch events and map them to the
keyboard layout, which is indirect and inaccurate [34, 38].
We could deploy ResType on table surfaces and use the adap-
tive keyboard to improve the experience of AR/VR typing.

9 LIMITATIONS AND FUTUREWORK
Thoughwe achieved satisfying performance on ResType, our work
has several limitations, which provide motivations for future work:

(1) Input limitations: we only implemented 26 English letters
and “space” to input. Punctuations and other symbols could
be input by gestures or separate input modes. Besides, the
decoding algorithmonly predictswordswith the same length
as the input sequence and does not support OOV (Out of Vo-
cabulary) words.

(2) Keyboard fitting: ResType does not support rotation as dis-
cussed in subsection 8.3. Future work on large sensing sur-
faces or multiuser scenarios should consider keyboard rota-
tion to achieve a more flexible input experience.

(3) Personalization: we pooled all users’ typing data and imple-
mented the general touchmodel in study two. For long-term
use or for users with special input habits, personalization
should be considered.

(4) Hardware: ResType requires recognizing resting touchpoints,
which is not supported bymost commercial tablets currently.
Furthermore, we implemented and tested ResType only on
the SenselMorph touchpad to identify unintentional touches
accurately. Since the touchpad was separated from the com-
puter screen, it may lead to a slightly different user behav-
ior (e.g. whether users’ hands could block the screen or not).
If possible, future work should test it on larger surfaces or
touchscreens to explore ResType on a wider range of de-
vices.

10 CONCLUSION
We present ResType, an invisible and adaptive keyboard that sup-
ports touch typing on three-state touch surfaces (e.g. tablets with
unintentional touch prevention). Users rest their fingers on the
home row of an imaginary keyboard, and the virtual keyboard
will adapt to their fingers automatically. We followed TypeBoard
[20] to prevent unintentional touches. We explored user behav-
ior on ResType, including calibration and touchpoint distribution.
We then designed keyboard fitting and input decoding algorithms
to support adaptive keyboard and touch typing. The decoding al-
gorithm achieved 96.3% top-1 and 99.0% top-3 accuracies in user
studies. After a 5-day user study, users achieved 41.26 WPM on
ResType, outperforming tablet keyboards by 13.5% and reaching
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86.7% of physical keyboards. It also achieved comparable perfor-
mancewith state-of-the-artmethods on tablets and does not need a
visible layout or display devices. ResType supports efficient touch
typing, which could be used in scenarios that require less or no vis-
ible keyboard layout, like tablet touchscreens, smart surfaces, and
AR/VR.
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